量子电子学报, 2017, 34 (1): 117, 网络出版: 2017-02-09   

外场对InPBi量子阱中激子结合能的影响

Effect of external field on exciton binding energy in InPBi quantum well
作者单位
1 曲阜师范大学物理工程学院, 山东 曲阜 273165
2 中国科学院上海微系统与信息技术研究所信息功能材料国家重点实验室, 上海 200050
摘要
在有效质量近似下运用变分法计算了InAlAs/InPBi/InAlAs量子阱中的激子结合能随阱宽、 Al组分、Bi组分的变化情况,分析了外加电场和磁场对激子结合能的影响。结果表明:激子结合 能随阱宽增大呈现先增大后减小的趋势;随Al、Bi组分的增大,激子结合能也逐渐增大;外加电场 较小时对激子结合能的影响很小,外加电场较大时破坏了激子效应;激子结合能随外加磁场增大呈 现单调增大的趋势。计算结果对InAlAs/InPBi/InAlAs量子阱在光电子器件方面的应用有一定指导意义。
Abstract
Changes of exciton binding energies in InAlAs/InPBi/InAlAs quantum well with the well width, Al and Bi components are calculated using the variational method in the effective mass approximation. The effects of the applied electric field and magnetic field on exciton binding energy are analyzed. Results show that exciton binding energy increases firstly and then decreases with the increasing of well width. With the increasing of Al and Bi components, the exciton binding energy also increases gradually. Effect of the applied electric field which is smaller on the exciton binding energy is small. When the applied electric field is large enough, it will destroy the exciton effect. Exciton binding energy presents monotonous increasing tendency with the increasing of the applied magnetic field. The calculation results have certain guiding significance for applications of InAlAs/InPBi/InAlAs quantum well in optoelectronic devices.
参考文献

[1] Restrepo R L, Ungan F, Kasapoglu E, et al. The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well[J]. Physica B, 2015, 457: 165-171.

[2] Al E B, Ungan F, Yesilgul U, et al. Effects of applied electric and magnetic fields on the nonlinear optical properties of asymmetric GaAs/Ga1-xAlxAs double inverse parabolic quantum well[J]. Optical Materials, 2015, 47: 1-6.

[3] Kasapoglua E, Sari H, Skmen I. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field[J]. Physica B, 2007, 390(1-2): 216-219.

[4] Nazari M, Karimi M J, Keshavarz A. Linear and nonlinear optical absorption coefficients and refractive index changes in modulation-doped quantum wells: Effects of the magnetic field and hydrostatic pressure[J]. Physica B, 2013, 428(10): 30-35.

[5] Kasapoglu E, Skmen I. Interband absorption and exciton binding energy in an inverse parabolic quantum well under the magnetic field[J]. Phys. Lett. A, 2007, 372(1): 56-59.

[6] Yang Shuangbo. Effect of temperature and external magnetic field on the structure of electronic state of the Si-uniformlly-doped GaAs quantum well[J]. Acta Phys. Sin. (物理学报), 2014, 63(5): 057301 (in Chinese).

[7] Elagoz S, Amca R, Kutlu S, et al. Shallow impurity binding energy in lateral parabolic confinement under an external magnetic field[J]. Superlattices and Microstructures, 2008, 44(6): 802-808.

[8] Bilekkaya A, Aktas S, Okan S E, et al. Electric and magnetic field effects on the binding energy of a hydrogenic impurity in quantum well wires with different shapes[J]. Superlattices and Microstructures, 2008, 44(1): 96-105.

[9] Zhang Hong, Liu Lei, Liu Jianjun. Binding energies of excitons in symmetrical GaAs/Al0.3Ga0.7As double quantum wells[J]. Acta Phys. Sin. (物理学报), 2007, 5(1): 487-490 (in Chinese).

[10] Gu Yi, Wang Kai, Zhou Haifei, et al. Structural and optical characterizations of InPBi thin films grown by molecular beam epitaxy[J]. Nanoscale Research Letters, 2014, 9(1): 226-234.

[11] Wang K, Gu Y, Zhou H F, et al. InPBi single crystals grown by molecular beam epitaxy[J]. Scientific Reports, 2014, 4(2): 5449.

[12] Wu S D. Exciton binding energy and excitonic absorption spectra in a parabolic quantum wire under transverse electric field[J]. Physica B, 2011, 40(24): 4634-4638.

[13] Ferreira E C, Da Costa J A P, Freire J A K. Stark effect in the magneto-exciton energy in GaAs/AlxGa1-xAs double quantum wells[J]. Physica E, 2003, 17(1): 222-224.

[14] Yuan Lihua, Wang Daobin, Chen Yuhong, et al. Effect of a magnetic field on the energy levels of donor impurities in the ZnO parabolic quantum well[J]. Journal of Semiconductors, 2011, 32(8): 1-4.

[15] Zhang Jinfeng, Wang Hailong, Gong Qian. Binding energies of excitons in symmetrical Cd1-xMnxTe/CdTe parabolic quantum well[J]. Chinese Journal of Quantum Electronics (量子电子学报), 2015, 32(5): 635-640 (in Chinese).

[16] Wang Wenjuan, Wang Hailong, Gong Qian, et al. External electric field effect on exciton binding energy in InGaAsP/InP quantum wells[J]. Acta Phys. Sin.(物理学报), 2013, 62(23): 237104 (in Chinese).

[17] Paul Harrison. Quantum Wells, Wires and Dots[M]. Second Edition, Chichester: John Wiley and Sons. Ltd., 2009: 1-217.

[18] Herbert Li E. Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures[J]. Physica E, 2000, 5(4): 215-273.

[19] Samajdar D P, Das T D, Dhar S. Calculation of direct E0 energy gaps for III-V-Bi alloys using quantum dielectric theory[C]. International workshop on the Physics of Semiconductor Devices, 2014: 779-781.

陈丽, 王海龙, 陈莎, 李正, 李士玲, 龚谦. 外场对InPBi量子阱中激子结合能的影响[J]. 量子电子学报, 2017, 34(1): 117. CHEN Li, WANG Hailong, CHEN Sha, LI Zheng, LI Shiling, GONG Qian. Effect of external field on exciton binding energy in InPBi quantum well[J]. Chinese Journal of Quantum Electronics, 2017, 34(1): 117.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!