光学 精密工程, 2019, 27 (7): 1516, 网络出版: 2019-09-02   

面向大面积微结构批量化制造的复合压印光刻

Composite imprint lithography for mass producing large-area microstructures
作者单位
青岛理工大学 山东省增材制造工程技术研究中心, 山东 青岛 266520
摘要
为了解决在大尺寸非平整刚性衬底和易碎衬底上高效低成本批量化制造大面积微纳结构这一难题, 提出一种面向大面积微结构批量化制造的复合微纳压印光刻工艺。阐述了复合压印光刻的基本原理和工艺流程, 通过实验揭示了主要工艺参数(覆模速度、压印力、压印速度、固化时间)对于压印结构的影响及规律。最后, 利用课题组自主研发的复合压印光刻机, 并结合优化的工艺参数, 在3种不同的硬质基材(玻璃、PMMA、蓝宝石)上实现了微尺度柱状结构(最大图形区域为132 mm×119 mm)、微尺度光栅结构(最大直径为1524 cm的圆形区域)和纳尺度柱状结构(图形区域为47 mm×47 mm)的大面积微纳结构制造。研究结果表明, 提出的复合微纳米压印工艺为大面积微纳结构宏量可控制备、以及大尺寸非平整刚性衬底/易碎衬底大面积图形化提供了一种全新的解决方案, 具有广阔的工业化应用前景。
Abstract
To implement low-cost mass production of large-area micro/nanostructures on large-size rigid and fragile substrates, this study presents a novel composite nanoimprint lithography technique. First, the basic principle and process of the composite imprint lithography are described. Then, the effects and rules of the key process parameters (i.e., spreading speed of the flexible mold, imprint force, imprint speed, and curing time) on the imprinted patterns are revealed by a series of experiments. Finally, through a combination of the home-made composite imprinter and optimized process parameters, four typical cases are illustrated. We fabricated large-area micro/nanostructures on three rigid substrates (glass, polymethyl methacrylate, and sapphire), including microscale columnar structures (the largest graphic area is 132 mm× 119 mm), a microscale grating structure (the largest area is 6-inch round), and a nanoscale columnar structure (the graphic area is 47 mm× 47 mm). Experimental results show that the presented composite imprint lithography technique provides a novel way for the macroscopic quantity preparation of large-area micro/nanostructures and large-area patterning on rigid or fragile substrates, thus presenting a bright prospect for industrial applications.
参考文献

[1] AHN S H, GUO L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting[J]. ACS Nano, 2009, 3(8): 2304-2310.

[2] BLSI B, TUCHER N, HHN O, et al.. Large area patterning using interference and nanoimprint lithography[C]//Micro-Optics 2016. International Society for Optics and Photonics, 2016, 9888: 98880H.

[3] KOBRIN B, BARNARD E S, BRONGERSMA M L, et al.. Rolling mask nanolithography: The pathway to large area and low cost nanofabrication[J]. SPIE, 2012, 8249: 82490O.

[4] LAN H, DING Y, LIU H. Nanoimprint Lithography: Principles, Processes and Materials[M]. New York: Nova Science Publishers, 2011.

[5] 孟繁斐, 步敬. 集成成像系统中高填充率微透镜阵列的设计与加工[J]. 光学 精密工程, 2017, 25(8): 2130-2138.

    MENG F F, BU J. Design and fabrication for micro-lens array with high fill factor in integral imaging system[J]. Opt. Precision Eng., 2017, 25(8): 2130-2138. (in Chinese)

[6] 郑永广, 张然, 刘泽, 等. 添加剂对纳米压印模板光栅结构填充效果的改善作用[J]. 光子学报, 2018, 47(9): 114-120.

    ZHENG Y G, ZHANG R, LIU Z, et al.. Usage of additive for the improvement of the filling effect during filling the grating structure of the nanoimprint stamp[J]. Acta Photonica Sinica, 2018, 47(9): 114-120. (in Chinese)

[7] DUMOND J J, YEE LOW H. Recent developments and design challenges in continuous roller micro- and nanoimprinting[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2012, 30(1): 010801.

[8] CHUANG C H, LU D M, WANG P H, et al.. Antireflective polymer films via roll to roll UV nanoimprint lithography using an AAO mold[J]. Microsystem Technologies, 2018, 24(1): 389-395.

[9] 陈鑫, 赵建宜, 王智浩, 等. 用多层掩模去除纳米压印工艺中的残胶[J]. 光学 精密工程, 2013,21(6): 1434-1439.

    CHEN X, ZHAO J Y, WANG ZH H, et al.. Clearing residual resist in nanoimprint lithography by multi-mask[J]. Opt. Precision Eng., 2013,21(6): 1434-1439. (in Chinese)

[10] 刘民哲, 王泰升, 李和福, 等. 静电场辅助的微压印光刻技术[J]. 光学 精密工程, 2017, 25(3): 663-671.

    LIU M ZH, WANG T SH, LI H F, et al.. Electrostatic field assisted micro imprint lithography technology[J]. Opt. Precision Eng., 2017, 25(3): 663-671. (in Chinese)

[11] AKTER T, DESAI S. Developing a predictive model for nanoimprint lithography using artificial neural networks[J]. Materials & Design, 2018, 160: 836-848.

[12] 褚金奎, 康维东, 曾祥伟, 等. 基于柔性纳米压印工艺制备中红外双层金属纳米光栅[J]. 光学 精密工程, 2017, 25(12): 3034-3040.

    CHU J K, KANG W D, ZENG X W, et al.. Fabrication of bilayer metallic nano gratings in mid-infrared region based on flexible nanoimprint lithography[J]. Opt. Precision Eng., 2017, 25(12): 3034-3040. (in Chinese)

[13] KIM K D, JEONG J H, PARK S H, et al.. Development of a very large-area ultraviolet imprint lithography process[J]. Microelectronic Engineering, 2009, 86(10): 1983-1988.

[14] AHN S. H, MILLER M, YANG S, et al.. High volume nanoscale roll-based imprinting using jet and flash imprint lithography[C]//Nanoengineering: Fabrication, Properties, Optics, and Devices X. International Society for Optics and Photonics, 2013, 8816: 881602.

[15] SHNEIDMAN A V, BECKER K P, LUKAS M A, et al.. All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography[J]. ACS Photonics, 2018, 5(5): 1839-1845.

[16] AHN S H, GUO L J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates[J]. Advanced Materials, 2008, 20(11): 2044-2049.

[17] JOHN J, TANG Y Y, ROTHSTEIN J P, et al.. Large-area, continuous roll-to-roll nanoimprinting with PFPE composite molds[J]. Nanotechnology, 2013, 24(50): 505307.

[18] JI R, HORNUNG M, VERSCHUUREN M A, et al.. UV enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing[J]. Microelectronic Engineering, 2010, 87(5/6/7/8): 963-967.

[19] VERSCHUUREN M A, MEGENS M, NI Y, et al.. Large area nanoimprint by substrate conformal imprint lithography (SCIL)[J]. Adv. Opt. Techn., 2017, 6(3-4): 243-264.

[20] LAN H B. Large-area Nanoimprint Lithography and Applications[M]//Micro/Nanolithography - A Heuristic Aspect on the Enduring Technology. London: IntechOpen, 2018.

[21] VAN SCHOOT J, SCHIFT H. Next-generation lithography- an outlook on EUV projection and nanoimprint[J]. Advanced Optical Technologies, 2017, 6(3/4): 159-162.

[22] 兰红波, 郭良乐, 许权, 等. 大面积纳米压印光刻晶圆级复合软模具制造[J]. 光学 精密工程, 2018, 26(4): 894-905.

    LAN H B, GUO L L, XU Q, et al.. Wafer-level composite mold for large-area nanoimprint lithography[J]. Opt. Precision Eng., 2018, 26(4): 894-905. (in Chinese)

[23] 杨建军, 李红珂, 朱晓阳, 等. 高性能电加热玻璃3D打印与微转印复合制造工艺[J]. 光学 精密工程, 2019,27(4): 820-831.

    YANG J J, LI H K, ZHU X Y, et al.. Three-dimensional printing and micro-transfer composite manufacturing process for high performance glass heaters[J]. Opt. Precision Eng., 2019, 27(4): 820-831. (in Chinese)

[24] ZHU X, XU Q, LI H, et al.. Fabrication of high-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D printing and UV-assisted microtransfer[J]. Advanced Materials, 2019: 1902479.

[25] ZHU X, XU Q, LI H, et al.. Fabricating transparent electrodes by combined electric-field-driven fusion direct printing and the liquid bridge transfer method[J]. Journal of Physics D: Applied Physics, 2019, 52(24): 245103.

[26] ZHU X, XU Q, HU Y, et al.. Flexible biconvex microlens array fabrication using combined inkjet-printing and imprint-lithography method[J]. Optics & Laser Technology, 2019, 115: 118-124.

[27] 郭良乐. 面向大尺寸非平整衬底图形化的复合纳米压印研究[D].青岛: 青岛理工大学,2018.

    GUO L L. Composite Nanoimprinting Lithography for Large-area and Non-flat Substrates Patterning [D]. Qingdao: Qingdao University of Technology, 2018. (in Chinese)

[28] 李延强, 兰红波, 许权, 等. 纳米压印复合软模具建模研究[J]. 机械工程学报, 2018, 54(19): 170-181.

    LI Y Q, LAN H B, XU Q, et al.. Modeling of flexible composite mold for nanoimprint lithography[J]. Journal of Mechanical Engineering, 2018, 54(19): 170-181. (in Chinese)

兰红波, 刘明杨, 郭良乐, 许权. 面向大面积微结构批量化制造的复合压印光刻[J]. 光学 精密工程, 2019, 27(7): 1516. LAN Hong-bo, LIU Ming-yang, GUO Liang-le, XU Quan. Composite imprint lithography for mass producing large-area microstructures[J]. Optics and Precision Engineering, 2019, 27(7): 1516.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!