作者单位
摘要
1 塔里木大学农学院, 新疆 阿拉尔 843300
2 塔里木大学机械电气化工程学院, 新疆 阿拉尔 843300
3 浙江大学农业遥感与信息技术应用研究所, 浙江 杭州 310058
4 中国农业大学土地科学与技术学院, 北京 100083
5 塔里木大学园艺与林学学院, 新疆 阿拉尔 843300
土壤有机质(SOM)含量是制定枣园土壤施肥方案的主要依据。 合理的施肥方案对提升红枣品质、 减少农户投入和增加枣园产出有重要意义。 利用传统方法获取枣园SOM含量耗费时间和资源, 不符合枣园精准施肥管理的需求, 土壤有机质高光谱检测是一种有效的替代方法。 为筛选南疆枣园SOM的高光谱快速检测模型, 采用网格布点法采集158个枣园土壤样品, 测定风干土样的室内高光谱数据和SOM含量。 分别将400~2400 nm全波段(R)和通过竞争自适应加权算法(CARS)、 连续投影算法(SPA)、 粒子群优化算法(PSO)三种数据降维算法筛选的数据集与偏最小二乘回归(PLSR)、 反向传播神经网络(BPNN)、 卷积神经网络(CNN)三种建模方法结合构建12种枣园SOM含量的组合反演模型, 通过对比模型的精度评价指标和训练时间, 筛选枣园SOM含量最优光谱反演模型。 结果表明: (1) CARS、 SPA、 PSO三种降维算法都能将光谱数据压缩至原来的10%以下, 筛选波长数分别由原来的2 001个变量降为98、 156、 102个, 降维组合模型的验证集RPD均大于1.50, 均能实现对枣园SOM含量的反演, 与R组合模型相比, 降维组合模型至少能节省30%的时间成本, 特别是与BPNN和CNN等构建的组合模型, 能节省90%的训练时间, 且模型稳定性更强, 模型效果更优。 (2) CARS数据集构建组合模型的验证集R2均大于0.85, RPD均大于2.50, RPIQ均大于1.60, 在三种降维算法中效果最好; PSO数据集的组合模型验证效果略低于CARS数据集, 但优于R数据集, R2均大于0.80、 RPD均大于2.00; SPA数据集构建组合模型的验证效果要低于R数据集, 在三种降维算法中效果最差。 (3) BPNN和CNN两种方法的反演模型验证效果均优于PLSR模型, 而在模型训练时间和模型验证效果等方面, BPNN模型优于CNN模型, 其结合CARS数据集的验证效果最优, R2为0.91、 PRD为3.34、 RPIQ为3.17、 nRMSE%为11.93, 训练时间为58.00 s, 模型符合快速检测枣园SOM含量的要求。 CARS-BPNN模型为反演南疆枣园SOM的最优模型, 研究结果能够为南疆枣园土壤养分快速检测与制定施肥方案提供参考。
枣园土壤有机质 CARS算法 CNN模型 BPNN模型 检测模型 Soil organic matter in Jujube orchard CARS algorithm CNN model BPNN model Detection model 
光谱学与光谱分析
2023, 43(8): 2568
作者单位
摘要
1 塔里木大学农学院, 新疆 阿拉尔 843300
2 中国农业大学土地科学与技术学院, 北京 100083
3 浙江大学环境与资源学院, 浙江 杭州 310058
快速准确监测农田土壤全氮含量, 可显著提高土壤肥力诊断与评价工作的效率。 传统测定土壤全氮的方法存在耗时费力、 成本高、 环境污染等缺点, 而基于光谱学原理的土壤全氮定量方法克服了传统测量的劣势。 中红外(MIR)光谱相较于可见光-近红外(VNIR)光谱而言, 具有更多的波段数和信息量, 如何利用中红外光谱监测土壤全氮含量是具有重要应用前景的研究课题。 为了探索中红外光谱对土壤全氮监测的可行性, 以新疆南疆地区采集的246个农田土样为研究对象, 以室内测定的全氮含量和中红外光谱反射率数据为数据源, 分析了不同全氮含量土样的中红外光谱特征差异, 以主成分分析法(PCA)和连续投影算法(SPA)对光谱数据进行降维, 然后采用偏最小二乘回归(PLSR)、 支持向量机(SVM)、 随机森林(RF)和反向传播神经网络(BPNN)四种建模方法分别构建基于全波段和降维数据的土壤全氮含量定量反演模型。 研究结果表明: (1)土壤在中红外波段光谱反射率随全氮含量的增加而增加, 在3 620, 2 520, 1 620和1 420 cm-1附近存在明显的吸收谷; 将中红外光谱数据进行最大值归一化处理后, 可明显提高土壤光谱反射率与全氮含量的相关性。 (2)对比两种数据降维方法, PCA和SPA分别使模型变量数减少了99.8%和97.5%, 但以PCA提取的8个主成分为自变量建立的模型预测精度总体要高于SPA对应的模型, 因此以PCA提取的主成分建模更适于土壤全氮模型的构建。 (3)在建模集中, PLSR和SVM模型以全波段建模精度最高, 但建模变量数多, 建模效率较低, 而RF和BPNN模型分别以PCA和SPA降维后的数据建立的模型在保持精度相当的前提下, 可显著提高建模效率; 在预测集中, 基于PCA降维数据的BPNN模型预测能力最高, R2和RMSE分别为0.78和0.12 g·kg-1, RPD和RPIQ值分别为2.33和3.54, 模型具备较好的预测能力。 研究结果可为农田土壤全氮含量快速估测提供一定的参考价值。
中红外光谱 土壤全氮 反演模型 光谱数据降维 Mid-infrared spectrum Soil total nitrogen Inversion model Dimension reduction of spectral data 
光谱学与光谱分析
2022, 42(9): 2768
作者单位
摘要
1 华中师范大学地理过程分析与模拟湖北省重点实验室, 湖北 武汉 430079
2 INRAE, Unité InfoSol, 45075 Orléans, France
3 UMR SAS, INRAE, Agrocampus Ouest, 35042 Rennes, France
4 浙江大学农业遥感与信息技术应用研究所, 浙江 杭州 310058
土壤是陆地碳循环的中枢, 充分发挥土壤固碳潜力有助于减缓全球气候变化。 土壤有机碳 (SOC) 的高度分异性同时体现在空间和垂直分布上, 但是许多前期研究往往只考虑了空间分异, 而忽略了垂直分异。 尤其在青藏高原这种高寒山区, 土壤样品采集难度较大且费用昂贵。 可见近红外 (Vis-NIR) 光谱作为传统土壤实验室化学分析的辅助手段, 能够较为快速和精准地估测SOC含量。 但是土壤水分等环境因素会掩盖或改变SOC的Vis-NIR光谱吸收特征进而削弱模型预测精度。 外部参数正交化 (EPO) 和分段直接标准化 (PDS) 算法可以有效校正水分对光谱的影响, 但其在野外新鲜土柱上的表现还不得而知。 本研究旨在探索不同水分影响校正算法对野外剖面土壤光谱的校正能力, 对采自中国青藏高原海拔2 900~4 500 m色季拉山的共26个1 m深土柱。 沿深度以5 cm×5 cm为测量单元, 从各单元中心采集共计386个野外原状湿样Vis-NIR光谱, 并在实验室内测得相应386个研磨干样的Vis-NIR光谱以及SOC含量。 经EPO和PDS算法校正土壤水分对光谱的影响后, 通过随机森林建立土壤光谱和SOC含量的定量预测模型, 并使用靴襻法评估不同校正处理下预测模型的不确定。 土柱整体及垂直分布的精度结果表明, 经PDS法转换的农田和草地土柱湿样光谱均表现出良好的水分校正效果, 而EPO法仅对农田土柱有效。 水分影响校正算法在不同土壤深度上也存在显著差异, EPO和PDS对农田和草地表层样本的水分校正均效果明显。 两种校正方法的效果显示出地类和土层深度的依赖性。 本研究为利用Vis-NIR光谱技术在高寒山区野外快速准确估算土壤碳含量的垂直分异提供了必要参考。
土壤有机碳 外部参数正交化 分段直接标准化 随机森林 青藏高原 Soil organic carbon (SOC) External parameter orthogonalisation (EPO) Piecewise direct standardization (PDS) Random forest (RF) Qinghai-Tibet Plateau 
光谱学与光谱分析
2021, 41(4): 1234
作者单位
摘要
1 西藏农牧学院资源与环境学院, 西藏 林芝 860114
2 浙江大学环境与资源学院农业遥感与信息技术应用研究所, 浙江 杭州 310005
土壤侵蚀降低土地生产力, 导致土壤环境恶化, 其中水力侵蚀是土壤侵蚀中最主要的一种形式。 土壤可侵蚀性K值是评价土壤被降雨侵蚀难易程度的一项重要指标。 使用河南、 福建和浙江三省研磨干样可见-近红外(Vis-NIR)漫反射光谱数据, 将其转换为吸收率后进行Savitzky-Golay(SG)平滑去噪; 对土壤有机质(SOM)和机械组成进行精准预测后, 分别采用EPIC和RUSLE2模型估算K值, 并对预测精度进行比较分析, 所得结论如下: (1)建立土壤有机质和机械组成高光谱最佳预测模型, 土壤质地(砂粒、 粉粒和黏粒)预测采用支持向量机(SVM)模型, SOM预测采用局部加权回归(LWR)模型, 模型四分位相对预测误差(RPIQ)为2.27, 3.17, 2.18和3.44; (2)通过土壤质地估算的土壤渗透性等级分类效果较好, Kappa系数为0.62, 同时估测的土壤质地类型与实测土壤质地类型分布特征相近, 质地主要类型均是粉黏土、 砂黏壤土、 壤土、 壤砂土和砂壤土; (3)EPIC和RUSLE2两种模型均具有较为精确的估测能力, EPIC模型预测精度更高, 均方根误差(RMSEP)为0.006 6 (t·ha·h)/(ha·MJ·mm), RPIQ达1.58, 而RUSLE2模型精度相对较低(其中RPIQ为1.43), 因此推荐使用EPIC模型结合Vis-NIR光谱技术估测土壤可侵蚀性K值。 本研究为今后快速准确预测K值提供思路, 并为大面积监测土壤侵蚀提供辅助手段。
土壤可侵蚀性K值 Soil erodibility K value EPIC EPIC RUSLE2 RUSLE2 
光谱学与光谱分析
2018, 38(4): 1076
陈颂超 1,2,*彭杰 1纪文君 1周银 1[ ... ]史舟 1,2
作者单位
摘要
1 浙江大学环境与资源学院, 浙江 杭州 310058
2 中国科学院南京土壤研究所, 土壤与农业可持续发展国家重点实验室, 江苏 南京 210008
土壤有机质是农田肥力评估的重要指标, 要实现快速获取大面积土壤有机质的含量需要建立高效、 稳健的预测模型。 光谱技术能够快速诊断土壤有机质, 以水稻土为例, 从校正样本选择方法的对比, 研究了可见-近红外、 中红外和可见-近红外-中红外三种不同波段光谱对土壤有机质的预测能力。 可见-近红外和中红外区域的光谱反射率转换成吸收率后通过Savitzky-Golay平滑法去噪, 通过三种校正样本选择方法建立相应的偏最小二乘回归预测模型。 通过Rank-KS法建立的三种波段的有机质预测模型均优于Rank法和KS法, 中红外波段光谱的模型预测能力强于可见-近红外和可见-近红外-中红外波段的预测模型, 基于Rank-KS法建立的中红外波段有机质预测模型取得了最好的预测效果, RMSEP仅为3.25 g·kg-1, RPD达到4.24, 依据VIP得分筛选出可见-近红外和中红外波段的水稻土有机质重要建模波段。 因此, 中红外光谱建模技术能够对水稻土有机质进行快速定量分析, Rank-KS法可提高模型的预测能力, 为今后农田肥力评价和科学施肥提供技术支持。
水稻土 有机质预测 可见光-近红外光谱 中红外光谱 Paddy soil Prediction of SOM Visible-near infrared spectra Mid-infrared spectra 
光谱学与光谱分析
2016, 36(6): 1712
夏芳 1,*彭杰 1,2王乾龙 1周炼清 1,3史舟 1,3
作者单位
摘要
1 浙江大学 环境与资源学院农业遥感与信息技术应用研究所, 浙江 杭州 310058
2 塔里木大学植物科学学院, 新疆 阿拉尔 843300
3 浙江大学唐仲英传感材料及应用研究中心, 浙江 杭州 310058
利用浙江省36个县市的643个农田耕层土样的可见-近红外反射率数据以及重金属与有机质含量数据,分析了Ni、Cu、As、Hg、Zn、Cr、Cd、Pb含量与有机质含量的相关性,对比了不同重金属元素与有机质敏感波段的位置,并建立了各重金属元素含量的偏最小二乘回归(PLSR)模型.研究结果表明,Ni、Cr与有机质的相关性最优,As最差,相关系数分别为0.54、0.59、0.20,各重金属元素与有机质的相关系数与它在前三个主成份载荷图中与有机质的距离成反比;不同的重金属元素与有机质高光谱敏感波段的重叠度、回归系数的正负一致性具有明显差异,与有机质相关性越高的元素,其重叠度也越高、正负一致性也越好;在所有8种重金属元素的PLSR预测模型中,Ni、Cr的建模与预测效果较好,RPD值分别为1.94、1.80,模型具有一般的定量预测能力,其余6种重金属元素预测模型的RPD值均在1.00和1.40之间,模型只具备区别高值和低值的预测能力.该研究结果为大尺度区域土壤重金属污染的高光谱遥感监测提供了一定的理论依据与参考.
农田土壤 重金属污染 高光谱 预测 farmland soils heavy metal contamination hyperspectral prediction 
红外与毫米波学报
2015, 34(5): 593
作者单位
摘要
1 塔里木大学植物科学学院, 新疆 阿拉尔843300
2 浙江大学环境与资源学院农业遥感与信息技术应用研究所, 浙江 杭州310058
探明土壤盐渍化的高光谱遥感监测机理, 对改善高光谱遥感监测精度具有重要意义。 以南疆地区温宿县、 和田县、 拜城县的水稻土为研究对象, 通过分析土样的高光谱数据和室内测定的盐分与电导率数据, 研究了耕作土壤含盐量与电导率的关系, 并比较了含盐量和电导率与不同光谱指标的相关性以及二者高光谱反演的精度。 结果表明, 南疆水稻土的含盐量与电导率的相关性较低, 二者之间的关系因地区差异而有较大的变化; 含盐量与反射率、 一阶微分、 连续统去除之间的相关性要优于电导率, 特别在一些土壤盐渍化的敏感波段尤为突出; 以含盐量建立的多元线性回归、 主成分回归、 偏最小二乘回归模型的决定系数和相对分析误差均高于电导率。 研究表明高光谱信息对土壤含盐量的响应比电导率更敏感, 以含盐量为监测指标的高光谱反演精度明显要优于电导率。 该结果可为提高土壤盐渍化高光谱遥感监测精度提供理论依据。
电导率 含盐量 高光谱 反演精度 土壤 Electrical conductivity Soil salt content Hyperspectral Inversion accuracy Soil 
光谱学与光谱分析
2014, 34(2): 510
作者单位
摘要
1 浙江大学环境与资源学院农业遥感与信息技术应用研究所, 浙江 杭州 310058
2 中国农业科学院农业资源与农业区划研究所农业部作物营养与施肥重点开放实验室, 北京 100081
3 塔里木大学植物科学学院, 新疆 阿拉尔 843300
4 浙江大学唐仲英传感材料及应用研究中心, 浙江 杭州 310058
充分挖掘大样本土壤光谱库中有效信息,建立普适性强的土壤全氮(TN)含量反演模型,是高光谱分析的重要应用方向之一。研究采用偏最小二乘回归(PLSR)全局建模、局部加权回归(LWR)和模糊K均值聚类结合PLSR(FKMC-PLSR)局部建模三种方法,分别建立了来自中国西藏、新疆、黑龙江、海南等13个省采集的17种土类1661个土壤样本TN值的高光谱反演模型,并对浙江省104个水稻土样本进行模型验证。结果表明,在大样本下PLSR全局模型对高TN值待预测样本存在低估现象,导致整体预测精度偏低; LWR和FKMC-PLSR局部模型比PLSR全局模型能够更为准确地反演TN含量。研究结果可为利用大样本光谱数据库建立稳定性和普适性较高的土壤TN含量预测模型提供参考。
光谱学 土壤光谱库 局部加权回归 模糊K均值聚类 土壤全氮 大样本 
光学学报
2014, 34(9): 0930003
作者单位
摘要
1 浙江大学农业遥感与信息技术应用研究所, 浙江 杭州 310058
2 浙江大学地球科学系, 浙江 杭州 310027
3 浙江大学唐仲英传感材料及应用研究中心, 浙江 杭州 310058
利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要, 利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据, 去除噪声较大的边缘波段后, 进行倒数的对数转换(Log(1/R))为吸收光谱。 在分析吸收光谱和光谱指数与SOM关系的基础上, 采用偏最小二乘回归法进行SOM的建模预测并借助地统计学方法进行SOM空间变异制图研究。 结果表明, 建模效果好的指标分别为特征波段(R2=0.91, RPD=3.28), 归一化光谱指数(R2=0.90, RPD=3.08), 特征波段与3个光谱指数组合(R2=0.87, RPD=2.67), 全波段(R2=0.95, RPD=4.36)。 光谱指标的克里格制图与实测SOM制图表现出相同的空间变异趋势, 不同的指标均达到了较好的预测效果。
Vis-NIR光谱 野外型光谱仪 土壤有机质 预测与制图 偏最小二乘回归法(PLSR) 地统计 Visible-near infrared(Vis-NIR) reflectance spectro ASD FieldSpec Pro FR spectrometer Soil organic matter(SOM) Prediction and mapping Partial Least Squares Regression(PLSR) Geostatistics 
光谱学与光谱分析
2013, 33(4): 1135
作者单位
摘要
1 浙江大学农业遥感与信息技术应用研究所, 浙江 杭州 310058
2 云南农业大学资源与环境学院, 云南 昆明 650201
3 浙江大学唐仲英传感材料及应用研究中心, 浙江 杭州 310058
可见/近红外高光谱技术与建模方法是当前土壤近地传感器研究领域的重要方向, 可应用于土壤养分信息的快速获取和农田作物的精确施肥管理。 以浙江省水稻土为研究对象, 利用以非线性模型为核心的数据挖掘技术, 包括随机森林、 支持向量机、 人工神经网络等方法分别建立了不同建模集和验证集的原始光谱与有机质含量的估测模型。 结果表明: 研究比较的1∶1, 3∶1和全部样本建模并全部验证的三种样本模式划分对建模的结果有一定的影响。 相较于目前常用的偏最小二乘回归(PLSR)建模方法而言, 非线性模型RF和SVM也取得了较好的建模精度, 三种模式下其RDP值均大于1.4。 特别是采用SVM建模方法所得模型具有很好的预测能力, 模式二下其RDP值达到2.16。 同时引入ANN方法改进建立的PLSR-ANN方法显著提高了PLSR的模型预测能力。
水稻土 有机质 可见近红外光谱 建模方法 Paddy soil Soil organic matter Vis-NIR spectroscopy Modeling 
光谱学与光谱分析
2012, 32(9): 2393

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!