高银军 1,3高丽红 1,2张相华 3马壮 1,2,*[ ... ]田宙 3
作者单位
摘要
1 北京理工大学 材料学院,北京 100081
2 北京理工大学 冲击环境材料技术重点实验室,北京 100081
3 西北核技术研究院,陕西西安 710024
4 西北核技术研究院 激光与物质相互作用国家重点实验室,陕西西安 710024
为了获取强爆炸光辐射作用下材料的能量耦合特性,发展了强爆炸辐射源参数以及光辐射传输的物理模型和计算方法,计算给出了不同条件下目标位置处的光辐射谱特征。利用材料光谱反射率测量方法,结合光辐射耦合系数计算方法获取了几类材料的能量耦合系数。结果显示:金属、陶瓷材料的光辐射耦合系数相对较小,而碳纤维环氧复合材料的耦合系数可达0.92;采用实际光辐射能谱计算的耦合系数比近似6000 K黑体谱的结果要高,最大约14%。以铝材料为例,光辐射耦合系数随当量及爆心距离增加均表现出逐渐减小的趋势,但总体变化幅度不大。
强爆炸 光辐射 谱分布 能量耦合特性 strong explosion thermal radiation spectral distribution energy coupling coefficient 
中国光学
2020, 13(6): 1267
作者单位
摘要
西北核技术研究所, 陕西 西安710024
采用大涡模拟方法计算了来流速度为0.4 Ma情况下球/柱形结构附近的流场, 根据密度数据计算了光程差及气动相屏, 并研究了尾流对激光传输的影响。结果表明: 光程差空间均方根的时间平均值随发射角增大而增大, 发射角从120°增加到148°时, 其数值从0.11 μm增加到0.28 μm; 光程差空间均方根随时间变化剧烈, 发射角为148°时, 其时间均方根可达0.04 μm; 球/柱尾流对激光传输有很大影响, 发射角为148°情况下, Strehl比的时间平均值为0.33, 并且Strehl比的时间平均值随发射角的增大而减小, 发射角从120°增加到148°过程中, Strehl比的时间平均值减小了59%; Strehl比随时间变化剧烈, 其时间均方根大于0.05。
尾流 气动光学效应 激光传输 大涡模拟 wake aero-optical effect laser propagation large eddy simulation 
红外与激光工程
2017, 46(9): 0906005
作者单位
摘要
西北核技术研究所, 陕西 西安 710024
采用大涡模拟的方法计算了来流速度为0.5 ~0.7 Ma情况下横向球/柱形结构附近的流场, 给出了密度和光程差的统计结果, 并采用相屏法研究了几种流场对激光传输的影响。结果表明: 密度扰动均方根和光程差均方根随着来流速度和发射孔径的增加而增大; Ma从0.5增至0.7时, 孔径为0.5 m情况下, 密度扰动均方根增长了90%, 孔径为0.25 m情况下, 光程差均方根增长了90%; Ma=0.6情况下, 孔径从0.25 m增加到0.75 m时, 两个参数各增加了4倍。激光Strehl比随来流速度和发射孔径的增大而减小; 发射孔径为0.25 m情况下, 随着Ma从0.5增加至0.7, Strehl比从0.236下降至0.045; Ma=0.6情况下, 发射孔径从0.25 m增加至0.75 m过程中, Strehl下降了90%。
激光传输 气动光学效应 来流速度 laser propagation aero-optical effect free stream velocity 
红外与激光工程
2016, 45(12): 1211002
作者单位
摘要
西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
建立了气流作用下激光辐照金属的数值模型,利用CFD软件模拟了不同气流速度、不同厚度金属锡板的激光辐照熔化烧蚀过程,并对比了实验结果。通过研究液态金属迁移机理及对流散热机理,分析了气流速度对不同厚度金属板的辐照效应的影响。研究结果表明,较厚金属板的辐照过程中会形成较深的熔坑,使得相同气流速度下熔化的液态金属较难移除,导致熔穿时间随气流速度增大而减小;较薄金属板的熔坑较浅,液态金属容易移除,由于移除的金属液滴混合在空气中增强了对流换热效果,因此熔穿时间随气流速度增大而增大。
激光技术 激光辐照 气流 金属熔化物迁移 对流散热 
激光与光电子学进展
2016, 53(6): 061408
作者单位
摘要
1 西北核技术研究所, 激光与物质相互作用国家重点实验室, 西安 710024
2 西北核技术研究所, 高功率微波技术重点实验室, 西安 710024
利用欧拉两相流模型和沸腾换热模型计算了高功率微波管收集极的散热问题。在给出电子束能量沉积规律的基础上,得到了热源项在收集极及冷却水中的分布形式。利用CFD软件计算了脉宽为45 ns、重频为50 Hz、平均功率为27 kW电子束作用下的收集极温度分布,重点研究了冷却水流速对散热效果的影响。研究结果表明,冷却水流速为1.5 m/s时,内壁面稳态峰值温度超过了收集极材料的熔点,会导致一定时间后收集极损坏; 散热峰值处对流换热大约占总换热量的71.7%,激冷换热大约占28.1%,相变换热占0.2%。冷却水流速小于5 m/s时,收集极最高温度随流速增加快速下降; 5~10 m/s时,温度下降缓慢; 超过10 m/s后,温度下降速度增大。针对该电子束条件,收集极安全工作要求冷却水流速不得低于5 m/s。
高功率微波管收集极 散热 沸腾 冷却水流速 high power microwave tubes collector heat dissipation boiling cooling water flow velocity 
强激光与粒子束
2016, 28(5): 053003
作者单位
摘要
西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
研究了气流环境下碳纤维/环氧树脂复合材料激光烧蚀羽烟对透射率的影响。由射流理论得到光学路径长度关系式,由碳纤维/环氧树脂复合材料的激光烧蚀模拟得到羽烟密度及速度关系式,进而利用Lambert-Beer 定律得到了羽烟透射率的计算模型。利用模型计算了激光辐照过程中的羽烟透射率,并与实验结果进行比较,验证了模型的合理性。进一步计算了外部参数对激光透射率的影响,计算结果表明,激光辐照开始后,热解区域在表面,烟气易于逸出,透射率快速下降到最低值,随后热解区域内移,由于材料渗透率较低,烟气逸出困难,透射率逐渐回升;激光功率密度越大,最小透射率越低,辐照期间的平均透射率越低;气流速度较大时,整个辐照期间的透射率都较高;总功率一定时,光斑半径越大,最小透射率越高,辐照期间的平均透射率越低。
激光技术 羽烟 激光辐照 碳纤维/环氧树脂复合材料 透射率 气流 
中国激光
2015, 42(2): 0206004
作者单位
摘要
西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
根据实验现象,提出了计算力学剥蚀的模型和判据,将剥蚀过程分解为材料分层和层内断裂两个过程:对分层过程利用激光辐照玻璃纤维/环氧树脂复合材料的热力学模型计算,对层内断裂过程用板壳模型计算。利用实验结果验证了模型的合理性,计算结果表明,力学剥蚀过程极大地降低了烧蚀穿孔所需的能量,对激光辐照效应影响很大;功率密度较低时,烧蚀效率较高。
激光光学 力学剥蚀 激光辐照 玻璃纤维/环氧树脂复合材料 板壳模型 
中国激光
2015, 42(1): 0106001
作者单位
摘要
西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
提出了一种计算玻璃纤维/环氧树脂复合材料激光烧蚀过程中能量耦合率的模型,并通过对激光辐照玻璃纤维/环氧树脂复合材料的数值模拟计算了烧蚀过程中的激光透射率及表面温度,与实验结果吻合较好。结果表明,利用该模型可以计算玻璃纤维/环氧树脂复合材料激光烧蚀过程中的能量耦合率。利用该模型进一步计算了不同激光强度下耦合系数的变化规律,计算结果表明,对玻璃纤维/环氧树脂复合材料的激光烧蚀,激光的吸收方式存在体吸收向面吸收转变的过程;激光强度越大,能量耦合率增大到稳定值所需时间越短,体吸收向面吸收转变的过程越快。
激光技术 玻璃纤维/环氧树脂复合材料 激光能量耦合率 激光烧蚀 激光强度 
中国激光
2014, 41(2): 0203001
作者单位
摘要
西北核技术研究所激光与物质相互作用国家重点实验室, 陕西 西安 710024
复合材料的抗激光烧蚀性能一般用烧蚀单位质量所需的激光能量(即烧蚀热)表征,这种表征方式忽略了激光强度与稳定性的影响。以C/SiC复合材料为例,在材料表面热化学平衡分析的基础上,基于复合材料激光烧蚀效应数值模拟程序,计算了不同参数下激光辐照复合材料的烧蚀热,分析了强度、频率、占空比等激光参数对烧蚀效率的影响。研究结果表明,烧蚀热与占空比、激光强度有关,与重复频率关系不大。激光强度越大,烧蚀热越小;占空比减小,单位烧蚀质量所需的能量增大,即烧蚀热随占空比的减小而增大;在平均功率密度及占空比相同的前提下,不同重复频率对加热影响很小。对C/SiC复合材料的激光烧蚀,相同平均功率密度下,激光强度不稳定性越大,烧蚀热的期望值越小。
激光技术 烧蚀热 C/SiC复合材料 激光参数 不稳定性 
中国激光
2013, 40(11): 1103010
作者单位
摘要
1 西北核技术研究所 第五研究室,陕西 西安 710024
2 激光与物质相互作用国家重点实验室,陕西 西安 710024
针对切向气流加载导致激光加热金属板在熔化前的穿孔效应,利用金属薄板的弹性弯曲理论,推导出了两种典型光束(方形和圆形)照射下的弯曲挠度表达式,利用Mises理论给出了非熔化穿孔的破坏判据。研究结果表明: 激光加热下材料强度降低是出现非熔化穿孔破坏的主要机理; 薄板在光斑区的最大变形与气流速度、光斑直径、板厚与弹性模量(U2a4/Eh3)相关,穿孔破坏温度与气流速度、光斑直径及板厚(Ua/h)2相关; 与方形光斑辐照相比,圆形光斑辐照的破坏阈值稍高一些。数值计算结果表明: 0.8 Ma切向气流作用下,铝合金壳体的激光破坏能量阈值大大降低(可达40%~50%),典型不锈钢壳体的破坏阈值降低相对较小(20%左右),气流作用导致金属板破坏阈值的下降是需特别关注的问题。
激光辐照 激光加热 切向气流 薄板弹性弯曲 非熔化穿孔效应 破坏温度 laser irradiation laser heating tangential airflow thin plate elastic bending burn-through with no-melting effect damage temperature 
中国光学
2013, 6(3): 332

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!