作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
在航天、**、工业这些对器件的体积有着严格要求的领域, 光电编码器不仅要求减小外径尺寸和重量, 更要提高其测量精度。本文以光电编码器误差补偿方法为研究对象, 基于后验误差拟合方法确定误差模型参数, 从而实现对小型光电编码器的深度误差补偿。分析了影响光电编码器测角误差的主要因素, 建立了长周期误差和短周期误差模型。然后, 采用后验误差拟合算法实现了对误差模型参数的确定, 提出误差补偿算法; 最后, 对某一小型光电编码器进行实验, 验证了所提出误差补偿算法的性能。某型号光电编码器补偿前的精度为22.48″, 补偿后的精度为5.82″。实验表明, 采用后验误差补偿方法可以不考虑误差影响因素的大小, 直接对编码器进行误差补偿, 具有效率高、补偿准确等优点, 极大地提高了批量生产时光电编码器产品的精度。
光电编码器 后验误差拟合 误差补偿 长周期误差 短周期误差 photoelectric encoder posteriori error fitting error-compensation long period error short period error 
光学 精密工程
2019, 27(1): 51
作者单位
摘要
1 长春理工大学 电子信息工程学院, 吉林 长春 130022
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
光电编码器作为速度反馈器件, 在工业、航空航天、**等领域应用广泛。其速度检测的准确度和响应时间直接影响了整个控制系统的性能。为此, 研究了一种编码器测速信号小波变换算法, 该算法能够减弱噪声和干扰的对测速精度影响。将该算法应用于某航天编码器中, 改善了其控制系统的动态响应和稳态精度。具有算法简单、占用资源少、耗时短、算法通用等特点, 并且可以推广到其他编码器研制中。同时, 还设计了一中光电编码器速度检测系统, 能够实现对光电编码器测速精度的检测。实验表明: 该算法应用到编码器中, 将测速误差从6.956 (")/ms降低到0.370 7 (")/ms。
小波变换 测速 编码器 检测 wavelet transform velocity measurement encoder detection 
红外与激光工程
2017, 46(5): 0517005
作者单位
摘要
中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
为实现高分辨力角位移测量, 提出了一种基于线阵图像探测器的角度细分方法。为消除安装调试时图像探测器与圆心距离变化产生的影响, 提出了一种具有较强适应性的高分辨力细分算法; 建立了该细分算法的数学模型, 并进行了误差分析。根据实际应用, 建立了由码盘偏心和图像探测器安装角度引起误差的模型, 并分析许多因素对细分算法的影响; 根据误差分析结果, 给出了减小图像式光电编码器细分误差的建议。结果表明, 在码盘圆周刻划线数大于或等于128时, 细分算法的误差较小, 可以被忽略。研究结果可为研制小型图像式光电编码器提供理论依据。
测量 信号处理 图像式光电编码器 高分辨力 细分算法 误差分析 
光学学报
2017, 37(3): 0312001
作者单位
摘要
1 长春理工大学电子信息工程学院, 吉林 长春 130022
2 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
为了提高测角分辨力,缩小码盘尺寸,并克服传统图像式编码器译码速度慢等缺点,提出了一种单圈绝对式高分辨力编码技术。通过分析码盘刻线与分辨力之间的关系,提出了绝对式单圈移位码编码方法;采用准直光源照射和线阵图像探测器识别的方法实现单圈码盘的译码方式;根据所提出的方法,设计了高分辨力码盘及译码电路。实验采用直径38 mm、刻划有10位编码的单圈码道,成功实现了10位编码的译码。该编码方式较传统采用面阵图像探测器的编码方法具有更快的响应频率。
测量 高分辨力 编码方式 图像识别 码盘 
光学学报
2016, 36(11): 1112001
作者单位
摘要
1 长春理工大学光电工程学院,吉林 长春 130022
2 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
为了保证高精度光电编码器在恶劣工作环境下的精确测量,建立一种基于高分辨力数字电位计+DSP+CPLD的莫尔条纹光电信号自动补偿系统。首先,介绍了自动补偿系统的工作原理及构成,并设计了系统使用过程中的工作模式;融合莫尔条纹信号各个偏差的补偿算法,建立了光电信号细分误差的综合补偿模型;然后,具体阐述了系统的硬件设计、相关软件设计,并分析了补偿系统自身存在的系统误差;最后,以24位光电编码器为实验对象,对该补偿系统进行测试分析,实验结果表明:自动补偿系统可实现编码器精码信号直流电平漂移、等幅性偏差、正交性偏差及二次、三次、五次谐波偏差的综合补偿,可使实际的静态细分误差减小0.61″。该系统可用在编码器的工作现场,实现莫尔条纹信号细分误差的自动修正。
高精度光电编码器 莫尔条纹光电信号 细分误差 自动 补偿系统 high precision photoelectric encoder Moire fringe photoelectric signal subdivision error automatic compensation system 
红外与激光工程
2016, 45(2): 0217002
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了提高光电编码器速度检测精度,设计了一种基于叠栅条纹光电信号的编码器测速方法。结合全微分方程,建立叠栅条纹光电信号测速模型。分析了影响编码器测速精度的主要因素,并对比不同误差对测速精度的影响。结合测速模型设计改进算法,并完成系统实现。实验结果表明:对某21位光电编码器进行测速实验,将测速误差均方根由0.0367 rad/s降低到0.0216 rad/s。此方法测量速度快,测速精度高,适合实时性要求较高的控制场合。
测量 光电轴角编码器 光电叠栅条纹 高精度测速 
中国激光
2015, 42(11): 1108003
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
为了提高编码器的测速精度, 研究了基于希尔伯特-黄变换的光电编码器单莫尔条纹测速方法。首先, 利用AD采集编码器的单路莫尔条纹光电信号, 并将信号序列通过EMD变换, 滤除直流分量; 然后, 利用希尔伯特变换求出信号的相位变化, 并通过差分运算求取信号的瞬时频率; 最后, 结合编码器的具体参数求取编码器的转速。实验结果表明:对某21位编码器进行测速实验, 测速误差均方差由0022 4 rad/s降低到0013 4 rad/s。此方法测速稳定性高, 抗干扰能力强, 可用于速度精度要求较高的测速场合。
测速 光电轴角编码器 单莫尔条纹 高精度测速 希尔伯特-黄变换 velocity measurement photoelectric angle encoder single Moiré fringe precise velocity measurement Hilbert-Huang transform 
中国光学
2015, 8(6): 1044
作者单位
摘要
中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
在编码器动态特性检测中, 角度基准的快速反应和精度直接影响着动态特性检测装置的准确性。为实现角度基准的快速响应, 提高基准编码器的测角精度, 本文设计了高精度快速细分角度基准编码器。首先, 通过对目前角度基准不足对编码器动态特性检测影响的分析, 得出动态检测精度主要受基准编码器的数据处理延时影响。其次, 通过对基准编码器结构、细分电路、处理电路等的设计, 完成了23位高实时性角度基准编码器的制作。最后, 为提高检测精度, 利用RBF神经网络对角度基准进行误差补偿。所设计的角度基准编码器分辨率达到0.15″, 并且可以在10 r/s速度时, 保证逐分辨率输出。经过测量, 补偿前基准编码器的精度为1.30″, 补偿后的基准编码器误差峰峰值不超过2.5″, 精度优于0.6″。高精度、高实时性角度基准编码器的研制, 提高了编码器动态特性检测系统的检测精度, 为研究编码器动态特性提供了基础。
动态检测 角度基准 快速细分 高精度 误差补偿 dynamic detection angle reference fast subdivision high precision error compensation 
中国光学
2015, 8(3): 447
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100039
为了提高光电编码器动态检测技术的稳速精度, 设计了基于永磁无刷直流电机的转台驱动系统。分析了动态检测转台工作时速度波动对编码器角度误差的影响; 结合空间矢量法建立无刷电机三相绕组的力矩合成模型, 使合成力矩在空间内任意位置幅值相同; 最后加入PI控制器, 并利用DSP+CPLD设计了驱动电路, 以保证电机匀速转动, 并可模拟编码器在实际应用中的各种转动方式。实验结果表明: 设计的编码器动态检测转台驱动系统在高、低速转动时都能保持恒定的转矩输出, 系统稳速精度高, 稳态误差小于±1 (°)/s。另外, 转台驱动系统转动稳定, 有效降低了速度波动对编码器误差检测的影响, 满足光电编码器动态检测的要求。
光电编码器 动态检测转台 无刷直流电机 PI控制 空间矢量合成 photoelectric encoder dynamic detection equipment brushless DC motor PI controller space-vector combination 
光学 精密工程
2014, 22(4): 979

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!