作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院 研究生院,北京 100039
开发了提取FY-3A紫外臭氧垂直探测仪遥感数据并进行处理的星上数据预处理软件。预处理包括引入仪器光谱响应度地面辐射定标数据,进行角度响应修正、非线性修正、换档比及漫反板衰减修正等。介绍了软件修正功能的原理,结合紫外臭氧垂直探测仪的在轨测量模式建立了相应数据修正算法和模型,并将修正算法和模型转化为功能丰富的星上数据预处理软件。使用该软件得到了在轨测试的太阳紫外光谱预处理数据,并以此为例给出了验证结果。分析比对表明,FY-3A星紫外臭氧垂直探测仪的全部软件功能均已得到实现,所测太阳紫外光谱与国外仪器数据比对其一致性达到±5%以内,验证了数据预处理软件的正确性。
紫外臭氧探测仪 臭氧垂直廓线 反演 星上数据预处理 
光学 精密工程
2010, 18(5): 1086
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院 研究生院,北京 100039
描述了FY-3A气象卫星紫外臭氧垂直探测仪的组成和4种主要工作模式,即大气测量模式、太阳连续测量模式、太阳分立测量模式及标准灯测量模式。在此基础上对在轨运行的任务进行了分析说明。针对仪器运行参数多、测量模式转换复杂等特点,提出了合理的在轨运行控制方案,介绍了其程控设计要点与实现。给出了FY-3A星紫外臭氧垂直探测仪在轨测量的太阳模式和大气模式紫外辐射遥感数据,其太阳分立模式波长重复性为±0.03 nm,自动增益转换功能使系统的动态范围达到106量级。实验结果表明,FY-3A星紫外臭氧垂直探测仪在轨工作正常,测量模式转换和执行准确,其运控方案完备,数据获取有效,仪器在轨工作处于最佳性能状态。
星载紫外臭氧垂直探测仪 在轨运行 软件 设计 satellite borne Solar Backscatter Ultraviolet Spec in-orbit operation software design 
光学 精密工程
2010, 18(2): 303
作者单位
摘要
1 中国科学院,长春光学精密机械与物理研究所,应用光学国家重点实验室,吉林,长春,130033
2 中国科学院,研究生院,北京,100039
极紫外望远镜工作波段与可见光波段相差近两个数量级,其工作波段的衍射极限很低,达到30.036″,使该波段望远镜角分辨率的检测很困难.本文介绍了一种极紫外望远镜角分辨率的评价方法.该方法利用通用可见光波段面形检测仪器,检测出极紫外望远镜光学元件面形误差和装调误差,将检测到的与波长无关的Zernike系数代入光学设计程序,计算出极紫外望远镜工作波段的点扩散函数和环绕能分布,进而计算出望远镜在极紫外波段的角分辨率.实验结果表明,极紫外望远镜的角分辨率可以达到0.18″.该方法是一种快捷、有效的极紫外波段成像仪器的评价方法.
极紫外望远镜 角分辨率 点扩散函数 环绕能 
光学 精密工程
2007, 15(11): 1644
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所 应用光学国家重点实验室,吉林 长春 130033
2 中国科学院 研究生院,北京 100039
提出了一种亚角秒精度的转角测量方法.利用ZYGO数字干涉仪测量压电陶瓷转动平台驱动待测标准平面镜偏转前后镜子面形精度的PV(Peak Valley)值,二者的差值除以待测标准平面镜的直径,其结果近似等于压电陶瓷转动平台转动的角度.通过测量与误差分析,验证了压电陶瓷转动平台的转角精度小于1 μrad(0.2″),而测量的总误差和压电陶瓷转动平台移动的角度大小有关,移动距离越大,产生的误差越大,但其相对误差小于1%.本测量方法证明压电陶瓷精密转动平台转角精度达到了极紫外太阳望远镜(EUT)0.8″的角分辨率的要求.
极紫外太阳望远镜 ZYGO干涉仪 压电陶瓷转动平台 转角精度 
光学 精密工程
2007, 15(2): 206
作者单位
摘要
中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室, 长春 130033
短波光学的迅猛发展和高精密光学仪器的需求日益增多,对高精度表面的加工与检测也随之重要起来。而在一般的干涉检测中,球面镜检测精度主要依赖参考镜的精度。利用Jensen提出的干涉仪绝对校准理论可以去除参考镜的误差和干涉仪的附加波像差,从而提高被测件测量精度。在研究Jensen绝对校准理论的基础上,提出一种利用泽尼克(Zernike)多项式进行波面相位转换的方法进行波面处理,并提出具体实施方案。对面形精度优于λ/37小凸球面进行测量得出了较好的结果,打破了标准镜头最优λ/20的局限,使这一理论简单易行地赋予应用。从而实现了高精度检测球面面形。
光学测量 绝对测量 干涉图处理 泽尼克多项式 
光学学报
2005, 25(2): 195
作者单位
摘要
中国科学院,长春光学精密机械与物理研究所,应用光学国家重点实验室,吉林,长春,130033
高精度检测技术是促进光学加工技术发展的必备条件.ZYGO干涉仪检测光学表面面形代表着国际先进水平,常规检测精度取决于仪器配备的标准镜头(通常标准镜头精度为λ/10,最高精度可达λ/20),λ/20测量精度不能满足更高精度面形检测的需求.本文探讨了表面绝对检测技术及误差控制,通过用ZYGO干涉仪及两种精度等级的参考镜头对f/1.07的球面镜进行常规GPI干涉和双球面实时绝对检测比对,证明了表面绝对检测的有效性.实验及分析表明:在超净实验室、高精度防振平台、高精密可旋转5维调整架及精密导轨的测量条件下,采用表面绝对测量技术,严格控制基准定位和共焦位置旋转角度定位,多次重复测量,λ/10标准镜头同样能够达到λ/30 PV的高精度检测目的.
干涉测量 绝对检测 误差控制 
光学 精密工程
2004, 12(z2): 1

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!