作者单位
摘要
成都理工大学材料与化学化工学院, 四川 成都 610059
近年来, 金纳米粒子(AuNPs)因其极高的消光系数以及距离依赖性颜色而被广泛用于比色传感器的开发利用。 常见的盐诱导AuNPs聚集通过电荷屏蔽的方式进行, 聚集过程易受到干扰, 聚集后颜色往往不稳定, 而DNA染料通过电荷中和的方式实现AuNPs聚集, 该方法具有用量少, 聚集速度快, 并且稳定性好的优势, 因此对常见DNA染料进行筛选十分必要。 系统筛选了8种常见DNA染料包括EB、 AO、 TO、 SG、 PG、 TOTO-1、 TOTO-3和YOYO用于诱导AuNPs的快速聚集。 实验发现诱导AuNPs团聚的染料用量在0.18~2.6 μmol·L-1之间, 相比NaCl和Cys用量分别为60和20 mmol·L-1的传统诱导聚集方法用量仅为万分之一。 通过考察DNA染料诱导AuNPs聚集的“IC50”值(即诱导剂使AuNPs聚集的最大吸光度变化(A680/A520)的50%的浓度)评价聚集效率, 在筛选的8种DNA染料中, SG、 PG、 TOTO-1、 TOTO-3和 YOYO分子的“IC50”值在0.12~0.30 μmol·L-1之间, 相对较小, 诱导AuNPs聚集效率高。 由于带正电的N原子数量对AuNPs的聚集有关键性的作用, 即带正电的N原子数量越多, 中和AuNPs时的用量越少。 通过Marvin View中microspecies(微观结构式)和microspecies distribution(微观结构式分布)算出了具体带正电的N原子个数, 结果表明, 在pH=7条件下, SG、 PG、 TOTO-1、 TOTO-3和 YOYO分子带正电荷的N原子较多, 因此上述染料诱导AuNPs聚集效率高。 通过乔布曲线(Job)计算出双链DNA(dsDNA)碱基对与DNA染料的结合比, 结果表明相同条件下, 筛选的8种DNA染料与dsDNA碱基对的结合比相差不大。 结合实验拟合曲线计算出dsDNA与DNA染料的结合常数, 计算表明SG, YOYO, TOTO-3, PG与dsDNA的结合常数较大, 在2.75×109~3.12×1010 L·mol-1之间, 与DNA结合能力较强。 综合考虑SG、 PG、 YOYO、 TOTO-3等染料在快速诱导AuNPs聚集及比色传感方面效果较好。
DNA染料 纳米金 结合常数 传感 DNA dyes Gold nanoparticles (AuNPs) Binding constant Screening 
光谱学与光谱分析
2023, 43(9): 2805
作者单位
摘要
1 重庆邮电大学光电工程学院,重庆 400065
2 重庆邮电大学生物信息学院,重庆 400065
硝酸根过量是导致水污染的主要原因之一。针对表面增强拉曼光谱技术直接检测水中硝酸根检出限低,无法达到国家地下水环境质量标准的问题,本课题组制备了一种半胱胺修饰金纳米粒子(AuNPs)的复合SERS基底,利用带正电荷的半胱胺对周围带负电荷的金纳米颗粒进行功能化修饰,增加SERS基底对硝酸根的亲和性,提高其对硝酸根的检测灵敏度。实验结果表明:使用去离子水浸泡自组装10-3 mol/L半胱胺的盖玻片3 h,再修饰20 mL金溶胶,这样制成的金纳米颗粒-半胱胺复合SERS基底的增强性能最佳,对硝酸钾的增强因子为2.14×105;8片不同基底上硝酸钾SERS信号的相对标准偏差为10.36%,检出限为0.01 mg/L,达到国家地下水环境质量标准规定的Ⅰ类水的检测标准,对光谱法测量水中总氮含量具有重要意义。
光谱学 金纳米颗粒-半胱胺 SERS基底 硝酸盐 
中国激光
2022, 49(11): 1111002
作者单位
摘要
1 江苏大学微纳米科学技术中心,镇江 212013
2 南京大学固体微结构物理国家重点实验室,南京 210093
基于金属包裹的多孔硅衬底具有制备成本低、检测能力强的优点。自20世纪表面增强拉曼散射(SERS)现象被发现以来,多孔硅-Au/Ag复合材料逐渐展现出作为SERS衬底的优势,被广泛应用于生物、化学、医疗等领域。本文综述了近些年来基于多孔硅复合Au/Ag纳米颗粒混合平台的研究,重点讨论了将贵金属Ag/Au复合于多孔硅衬底上的制备方法,介绍了它们在不同制备条件下枝晶结构的生长形貌和检测性能,并对多孔硅-Ag/Au枝晶复合结构作为SERS衬底的未来发展进行简要分析。
多孔硅 表面增强拉曼散射(SERS) 复合材料 枝晶结构 porous silicon surface-enhanced Raman scattering (SERS) AgNPs/AuNPs AgNPs/AuNPs complex meterial dendritic structure 
人工晶体学报
2021, 50(7): 1314
作者单位
摘要
上海大学特种光纤与光接入网省部共建重点实验室, 特种光纤与先进通信国际合作联合实验室,上海先进通信与数据科学研究院, 上海 200444
局域表面等离子共振不仅可以扩宽材料的光谱响应范围, 还可以增强局部电场从而使待测分子的拉曼信号增强, 在生命科学领域发挥着重要作用。本文建立了单个金纳米颗粒(gold nanoparticle, AuNP)和双个金纳米颗粒在全血环境中的模型, 并采用三维有限元方法系统地研究颗粒尺寸、间隙以及全血消光系数对金纳米颗粒近场增强的影响。研究表明, 在全血环境单个AuNP模型中, 随着颗粒尺寸增大, 共振峰红移。当颗粒尺寸为80 nm时, 局部电场最大。相比于空气介质, 在全血介质中的AuNP共振峰红移并且局域电场增强。全血的消光系数对局部电场的影响非常小, 局部电场增强差异小于0.1 V/m。在全血环境双个AuNPs模型中, 随着两颗粒间距减小, 共振峰蓝移且局域电场明显增强。当两颗粒间距为1 nm时, 拉曼增强因子可高达1011。该研究为全血环境中药物分子和生物标志物的表面增强拉曼散射灵敏性检测实验提供一定的理论指导。
全血环境 金纳米颗粒 近场增强 有限元法 whole blood enhancement AuNPs near- field enhancement finite-element method 
光散射学报
2020, 32(4): 348
作者单位
摘要
集美大学食品与生物工程学院, 福建 厦门 361021
孔雀石绿(MG)是一种有毒的三苯甲烷类物质, 由于其价格低廉, 抑菌效果好, 曾在水产养殖中被作为抑菌剂广泛使用。 但是长期大量的使用孔雀石绿将会对人体产生致癌、 致畸、 致突变的危害。 传统检测水中孔雀石绿的方法需要复杂的前处理, 花费大量时间, 且需要昂贵的仪器设备, 技术难度高, 因此发展一种快速简便的MG检测方法十分必要。 核酸适配体是一种能与靶标分子特异性结合的DNA或RNA片段, 它具有高特异性、 高亲和力、 易于化学合成和修饰、 稳定性高等特点, 是比抗体更为有潜力的靶标识别元素, 目前被广泛应用于传感检测中。 胶体金(AuNPs)具有高消光系数和表面等离子体共振现象, 可用于可视化检测体系中。 研究了一种基于胶体金和RNA适配体的可视化快速检测孔雀石绿的方法。 当有盐(NaCl)存在时, AuNPs会受到盐的作用而发生团聚, 其吸收光谱峰由520 nm处移到690 nm处, 溶液颜色由红色变成蓝色。 由于RNA适配体可以通过静电作用吸附在AuNPs表面, 对AuNPs起到保护作用, 可使AuNPs在盐溶液中不发生聚集而呈红色; 而当体系中有MG存在时, 由于MG与RNA适配体的特异性结合, 使得RNA适配体从AuNPs表面脱离, 游离的AuNPs遇盐发生聚集呈蓝色。 随着MG浓度的升高, 520 nm处吸光度值逐渐降低, 690 nm处吸光度值逐渐升高, 且溶液颜色逐渐由红色变为蓝色。 因此, 目标物MG的含量可通过肉眼观察溶液颜色或通过可见吸收光谱来确定, 整个检测过程不超过1小时。 以有或无MG时AuNPs于520及690 nm处吸光度比值的差值Δ(A690/A520)作为检测信号, 发现在NaCl浓度为0.2 mol·L-1、 RNA浓度为10 μmol·L-1及AuNPs的浓度为7 nmol·L-1时, MG浓度的线性范围为0.6~12.5 μmol·L-1[线性方程为Δ(A690/A520)=0.06c-0.01, R2为0.993], 检出限为0.04 μmol·L-1 (3α/κ, n=9)。 该方法对MG检测具有良好的选择性, 将此方法应用于养殖水样中孔雀石绿的检测, 加标回收率为92%~108%, 说明该方法能够准确、 灵敏、 快速检测水产养殖中的孔雀石绿。
可视化检测 孔雀石绿 胶体金 RNA核酸适配体 Colorimetric detection Malachite green AuNPs RNA aptamer 
光谱学与光谱分析
2020, 40(3): 831
作者单位
摘要
郑州轻工业大学 电气信息工程学院, 河南 郑州 450000
利用贵金属纳米颗粒独特的物理特性, 设计具有信号放大功能的荧光适体传感器用于多巴胺的浓度检测。基于金属荧光增强效应通过在金纳米颗粒与荧光基团之间添加隔离层的手段实现荧光信号放大。将化学修饰了SH键的核酸适体与金纳米颗粒溶液混合, 形成稳定的Au-S键结构并与标记荧光基团的DNA互补链利用碱基互补配对原则结合。然后, 通过调节所设计的核酸适体5′所添加的碱基A的数量, 从而调节荧光基团与金纳米颗粒表面的距离。同时, 优化核酸适体与金纳米颗粒之间的浓度比以及所处的反应环境的pH值, 获得最佳的放大效率。最后对不同浓度的多巴胺进行测试。实验结果表明: 金纳米颗粒溶液与核酸适体在一定的浓度比之下, 在隔离层厚度为27个碱基A时, 最大的荧光增强倍数为2.35。多巴胺浓度检测的线性范围为20~100 nmol/L, 最低检测限为20 nmol/L。该传感器可以在纳米级有效调控隔离层厚度, 提供了一种稳定的信号放大策略。
生物传感器 金纳米颗粒 金属增强荧光效应 核酸适体 biosensor AuNPs Metal-Enhanced Fluorescence (MEF) aptamer 
光学 精密工程
2019, 27(9): 1943
作者单位
摘要
广西科技大学生物与化学工程学院,广西 柳州 545006
本文采用湿化学方法制备具有表面增强拉曼散射活性的氧化石墨烯负载纳米金溶胶:通过以柠檬酸三钠为还原剂,在没有稳定剂、温和的液相反应条件下,同时还原氯金酸和深度氧化的石墨烯,原位制备氧化石墨烯负载金纳米颗粒复合物。利用紫外可见分光光度计、激光粒度分析仪、傅里叶变换红外吸收光谱仪、透射电子显微镜对所制得的氧化石墨烯负载金纳米颗粒复合物进行了表征和分析,并且采用拉曼光谱研究其作为增强试剂的性能。结果表明:所得溶胶在波长为540 nm左右存在较强的吸收峰,粒径分布在50 nm附近范围内;生成的金纳米粒子的大小及其分布受氯金酸用量的影响,并且粒径分布均匀,金纳米颗粒的平均尺寸为20 nm,大量金纳米颗粒均匀地附着在氧化石墨烯的片层之间;氧化石墨烯的含氧官能团大幅降低,氧化石墨烯表面基团大部分被还原;以R6G为探针分子验证其拉曼增强效应,在浓度低至10 nmol/L时依然具有较强的拉曼信号,增强因子达到2.4×105。所以高分散性、高稳定性的氧化石墨烯负载金颗粒溶胶,可作为SERS活性基底(增强试剂),用于快速检测。
石墨烯负载纳米金 局域表面等离子体共振 GO@AuNPs SERS SERS LSPR 
光散射学报
2015, 27(4): 0320
作者单位
摘要
发光与实时分析化学教育部重点实验室, 西南大学化学化工学院, 重庆400715
在Britton-Robinson(BR)(pH为9.0)缓冲介质中, 微量Hg(Ⅱ)离子能诱使被巯基乙酸钠包被的AuNPs发生聚集, 以此诱发局域表面等离子体共振(localized surface plasmon resonance, LSPR)散射峰的出现, 随着Hg(Ⅱ)浓度的不断增加, 体系在548 nm的LSPR散射信号显著增强, 其散射强度与Hg(Ⅱ)的浓度具有相关性, 且在0.08~0.8 μmol·L-1范围内呈现一定的线性关系, 由此构建了以Hg(Ⅱ)为目标分析物的LSPR散射分析检测方法, 检测限为8 nmol·L-1。 研究了体系的LSPR散射光谱以及吸收光谱, 利用扫描电镜考察了AuNPs与Hg(Ⅱ)反应前后粒径的变化情况, 发现单独的AuNPs呈现良好的分散状态, 当加入Hg(Ⅱ)后, AuNPs呈现聚集状态。 同时探讨了体系反应机理, 结果表明Hg(Ⅱ)的加入与AuNPs表面的羧基发生螯合作用诱导了AuNPs的聚集。 考察了体系对金属离子Hg(Ⅱ)的选择性, 实验中选择了一系列的金属离子与AuNPs作用, 其结果表明Hg(Ⅱ)与AuNPs作用的LSPR散射信号增强效果最为明显, 而其余离子即使在浓度较高时其LSPR散射强度依然较弱, 说明了实验设计方案对Hg(Ⅱ)具有优异的选择性。 此外, 研究了体系酸度, 离子强度以及稳定剂对体系的影响。 实验所建立起来的方法操作简单, 分析速度快速, 检测灵敏度较高。 该方法已经成功用于环境水样中痕量Hg(Ⅱ)的检测。
金纳米(AuNPs) 局域表面等离子体共振(LSPR) Hg(Ⅱ) Hg(Ⅱ) AuNPs Localized surface plasmon resonance(LSPR) 
光谱学与光谱分析
2014, 34(6): 1477
作者单位
摘要
华南师范大学激光生命科学教育部重点实验室暨激光生命科学研究所, 广东 广州510631
近年来, 纳米金粒子对聚合酶链式反应(polymerase chain reaction, PCR)的增效作用倍受关注, 但是其具体的机制仍未明确提出。研究发现在PCR反应中, 纳米粒子的增效作用是存在最佳浓度的, 增加DNA聚合酶或者小牛血清蛋白(BSA)可以消除纳米金粒子导致的抑制。我们认为, 纳米金粒子可能起到了类似于聚合酶β亚基的作用, 提高了DNA聚合酶的延伸能力; 而过量纳米金对PCR的抑制作用可能与纳米金结合单链DNA产生的位阻效应有关。
纳米金粒子 DNA聚合酶 机制 PCR polymerase chain reaction (PCR) gold nanoparticle (AuNPs) DNA polymerase mechanism 
激光生物学报
2011, 20(4): 427

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!