宋奇林 1,2,3,4李杨 1,3,4周子夜 1,3,4肖亚维 1,2,3,4[ ... ]饶长辉 1,2,3,4
作者单位
摘要
1 自适应光学全国重点实验室,四川 成都 610209
2 中国科学院大学,北京 100049
3 中国科学院光电技术研究所,四川 成都 610209
4 中国科学院自适应光学重点实验室,四川 成都 610209
Overview: Since the groundbreaking discovery of gravitational waves, the scientific community has fervently pursued the exploration of low-frequency gravitational waves to glean deeper insights into the cosmos. The inherent limitations of ground-based conditions, however, pose formidable challenges for detectors in capturing gravitational waves below the 1 Hz threshold. Consequently, the imperative has shifted toward the deployment of space-based gravitational wave detectors as the paramount solution for effective low-frequency gravitational wave detection. At the crux of space-based gravitational wave detection lies the pivotal role of spaceborne telescopes. Given the expansive transmission distances spanning magnitudes of 109 m between celestial constellations, the demand for nanoradian-level precision in telescope pointing accuracy becomes non-negotiable. The concomitant necessity for high-precision measurements and calibration emerges as a prerequisite for achieving the exacting standards of pointing accuracy in spaceborne telescopes dedicated to gravitational wave detection. To ameliorate the deleterious effects of pointing deviations on gravitational wave detection, this study strategically optimizes key parameters, including microlens structures, detector selection, and algorithmic frameworks, thereby achieving a breakthrough in high-precision pointing deviation measurements. Leveraging a low-density microlens array with extended sub-aperture focal lengths enhances the spatial scale of the light spot within each sub-aperture. This, coupled with detectors boasting a high signal-to-noise ratio, synergistically elevates the pointing detection accuracy of each discrete lens. Moreover, the paper introduces an innovative, Hartmann principle-based methodology for high-precision pointing deviation measurements, deploying a spatially reused paradigm across multiple sub-apertures. By aggregating measurement results from diverse sub-apertures, the approach effectively mitigates the influence of assorted random errors on measurement accuracy, thereby markedly enhancing the precision of pointing deviation measurements. Illustrating the efficacy of these methodologies, the paper exemplifies their application within the ambit of the "Tianqin Plan" for space-based gravitational wave detection. Employing numerical simulations and factoring in the design parameters of the Hartmann sensor, the study performs a meticulous analysis of pointing deviation measurement accuracy. Comparative analysis between single sub-aperture and sub-aperture correlation reuse technologies reveals a compelling enhancement in measurement accuracy, approximating a sevenfold improvement with the latter. The pointing deviation measurement accuracy achieved through sub-aperture correlation reuse technology is quantified at approximately 18.81 nanoradians. Considering the optical magnification inherent in spaceborne telescopes, estimated at around 30 times, the resultant pointing deviation measurement accuracy reaches an impressive 0.62 nanoradians. This design precision significantly surpasses the stipulated 1 nanoradian accuracy requirement for ground-based gravitational wave pointing deviation measurements. As a prudential measure, the proposed design incorporates a substantial margin to accommodate potential accuracy diminution attributable to external perturbations during empirical testing.
星载望远镜 指向偏差测量 哈特曼 多子孔径空间复用 spaceborne telescope pointing deviation measurement Hartmann multi-subaperture spatial multiplexing 
光电工程
2024, 51(2): 230234
耿康杰 1,2张贺童 1,2丁上上 1,2张洋 1,2[ ... ]付威威 1,2,**
作者单位
摘要
1 中国科学技术大学生物医学工程学院(苏州)生命科学与医学部,安徽 合肥 230000
2 中国科学院苏州生物医学工程技术研究所,江苏 苏州 215163
为了解决现有电脑验光仪和视力筛查仪体积庞大、价格昂贵的问题,设计并搭建了一套基于哈特曼波前检测原理的小型无透镜屈光测量系统。首先,对测量原理进行了详细介绍;接着,利用Zemax软件对图像采集光路进行模拟,并分析了实际测量屈光度与仪器-人眼距离的函数关系;最后,成功搭建了试验样机,并通过对中国计量科学研究院模拟眼进行屈光测量来验证函数关系的正确性及测量结果的准确性。实验结果表明该系统能有效地对-10~+10 D范围内的模拟眼进行屈光测量,测量结果显示:球镜度重复测量误差最高不超过0.20 D,变异系数不超过3%;柱镜度重复测量误差最高不超过0.25 D,变异系数不超过9%。此外,该系统结构简单且成本低廉。在满足测量结果准确性、稳定性要求的前提下,该系统更适用于需要仪器小型化的场合,具有广阔的应用前景。
测量 屈光测量 夏克-哈特曼波前传感器 波前重构 近视 小型化 
中国激光
2024, 51(3): 0307401
作者单位
摘要
1 苏州科技大学 物理科学与技术学院 江苏省微纳热流技术与能源应用重点实验室,江苏 苏州 215009
2 北京联合大学 数理部,北京 100101
相位是描述光波状态的重要参数,但却无法直接观察。本文基于哈特曼探测器的波前快速探测功能,研究了光波相位三维显示的方法,并研制出相位三维显示系统。首先,利用Zemax软件对系统的光源、准直透镜等光学参数进行优化设计;然后,基于模式法波前重构理论,根据探测的Zernike多项式离焦量和像散项系数,实现了对3个不同类型镜片的相位三维显示,并给出相应屈光度的测量方法;最后,实验验证了光波相位的三维显示和屈光度测量的有效性,-2.00 D的近视镜测量值为-2.07 D,1.00 D的远视镜测量值为0.91 D,0.50 D的散光镜测量值为0.56 D。实验结果表明,此系统能够较准确地测量屈光矫正镜的屈光度,并实现相位的三维显示。本文设计的基于哈特曼探测器的相位三维显示方法具有更好的环境适应能力,便于研究者直观观测光的相位分布。
哈特曼探测器 光波相位 三维显示 屈光不正 Hartmann detector light wave phase three-dimensional display ametropia 
液晶与显示
2023, 38(12): 1681
王亮 1,2孔文 1,2何益 1,2,*黄江杰 1,2史国华 1,2
作者单位
摘要
1 中国科学技术大学 生物医学工程学院, 安徽 合肥 230026
2 中国科学院苏州生物医学工程技术研究所, 江苏 苏州 215163
进行波前探测时,标准动物模型小鼠的眼底视网膜双层反射光会导致像差探测失效。为解决这一问题,本文提出了一种结合光学掩模调制的鼠眼像差测量方法,以期提高鼠眼波前像差测量精度。首先,根据鼠眼视网膜的关键参数,建立鼠眼波前像差探测的光学系统模型并进行光学仿真。然后,分析比较不同孔径的光学掩模对视网膜非目标层反射光束的遮拦效果,确定光学掩模参数与实验方案。最后,搭建鼠眼波前像差探测系统并开展在体鼠眼波前像差的测量实验。实验结果表明:0.5 mm孔径的光学掩模可以将鼠眼波前像差的测量均方根误差降低74.9%,与理论仿真的80%区域实现非目标层反射光遮拦效果近似。本文研究实现了对鼠眼视网膜非目标层反射光的有效遮拦,提升了鼠眼波前像差探测精度,为进一步实现鼠眼高分辨率成像奠定了基础。
波前探测 鼠眼像差 掩模 夏克—哈特曼波前传感器 wavefront detection mouse eye aberration mask Shack-Hartmann wavefront sensor 
中国光学
2023, 16(5): 1100
朱沁雨 1,2陈梅蕊 1,2陆焕钧 1,2樊丽娜 1,2[ ... ]曹召良 1,2,*
作者单位
摘要
1 苏州科技大学 物理科学与技术学院, 江苏 苏州215009
2 江苏省微纳热流技术与能源应用重点实验室, 江苏 苏州215009
3 中国航天科技集团公司上海卫星工程研究所, 上海 201109
4 北京联合大学数理部, 北京 100101
微透镜阵列的衍射效应会影响夏克—哈特曼波前探测器的探测精度。本文根据惠更斯-菲涅耳衍射理论建立二维微透镜阵列衍射模型,模拟分析使用理想平行光入射微透镜阵列时在焦平面产生的二维衍射光斑阵列。然后,通过计算衍射光斑偏移一个像素的过程中质心的误差,确定最大质心计算误差。接着,利用模式法进行波前重构,获得波前探测误差。仿真结果显示:在偏移0.21和0.79个像素,即波面偏转0.03°和0.13°时,衍射导致的波前误差最大为0.125 λ。最后,实验验证了该误差计算方法的有效性。该研究结果可为夏克一哈特曼波前探测器的设计提供理论依据。
哈特曼波前探测器 微透镜阵列 衍射效应 波前重构 探测误差 shack-hartmann wavefront sensor microlens array diffraction effect wavefront reconstruction detection error 
中国光学
2023, 16(1): 94
冯佳濠 1,2胡启立 3姜律 1,2杨燕燕 1,2[ ... ]胡立发 1,2,*
作者单位
摘要
1 江南大学 理学院,江苏 无锡 214122
2 江苏省轻工光电工程技术研究中心,江苏 无锡 214122
3 光电对抗测试评估技术重点实验室,河南 洛阳 471003
动态变化的大气湍流和观测目标的亮度的降低严重影响了夏克-哈特曼波前传感器(SHWFS)探测波前的精度。针对这两种复杂的观测条件,本文提出了一种以Transformer结构为基础的神经网络模型,它具有很好的全局建模能力,可以高精度地从SHWFS光斑阵列图像中重建波前。通过在动态变化的典型大气湍流相干长度r0下进行仿真模拟,所提出的网络模型的残余波前RMS误差值稳定在0.010~0.024 μm之间。与已有的方法相比,本文方法能够更准确地重构波前像差。此外,本文方法的重构精度受导星或观测目标的亮度变化影响很小。因此,本文方法的重构精度对两种观测条件变化均具有较强的稳定性,为大口径天文光学望远镜的高分辨率成像提供了一种有前景的方法。
自适应光学 深度学习 Shack-Hartmann波前传感器 Transformer 波前重构 adaptive optics deep learning shack-hartmann wavefront sensor transformer wavefront reconstruction 
液晶与显示
2023, 38(6): 798
李国会 1,2杜应磊 1,2徐宏来 1,2向汝建 1,2[ ... ]张秋实 1,2
作者单位
摘要
1 中国工程物理研究院应用电子学研究所,四川 绵阳 621900
2 中国工程物理研究院 高能激光科学与技术重点实验室,四川 绵阳 621900
分析了Yb:YAG板条激光器波前畸变的基本特征,结合光斑形态和功率密度,提出了采用水冷式13单元一维变形镜和95单元二维变形镜相结合的双变形镜组合模式对Yb:YAG板条激光器的波前畸变进行闭环校正。针对输出激光的特征进行了校正需求分析和校正能力分析,以此为基础开展了一维变形镜和二维变形镜的仿真及优化设计,同步开展了哈特曼和高压驱动系统等硬件的研制。研制出的变形镜经受了满功率出光考核,验证了内循环冷却装置对水冷式变形镜的冷却效果,随后在闭环校正实验中,将激光器的开环光束质量β=9.03提升至闭环的1.98,验证了双变形镜组合模式的自适应光学系统对Yb:YAG板条激光器光束质量校正的能力。
波前畸变 变形镜 光束质量 哈特曼传感器 wavefront aberration deformable mirrors beam quality Hartmann-Shack sensor 
红外与激光工程
2022, 51(8): 20210800
王晶 1,2王孝坤 1,2胡海翔 1,2李凌众 1,2苏航 1,2
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
随着先进光学系统设计与制造的发展,大口径光学系统得到了广泛的应用。然而,大口径平面镜高精度面形的检测手段不足,限制了大口径平面镜的制造与应用。为实现大口径平面反射镜的高精度面形检测,提出一种夏克哈特曼扫描拼接检测平面镜面形的方法。对扫描拼接原理、波前重构算法进行了研究,建立了微透镜阵列成像的数学模型,验证了夏克哈特曼扫描拼接检测原理的可行性。针对一口径为150 mm的平面镜进行了扫描拼接检测实验,拼接得到的全口径面形为0.019λRMS(λ=635 nm);与干涉检测结果对比,检测精度为0.008λRMS,结果表明该方法能够实现大口径平面反射镜的高精度检测。
光学检测 平面镜 面形误差 扫描拼接 夏克哈特曼 optical detection plane mirror surface-shape error scanning and stiching Shack-Hartmann 
红外与激光工程
2021, 50(10): 20210527
作者单位
摘要
中国船舶重工集团公司第七一八研究所, 河北 邯郸 056027
为了测量稳定运行时超声速自由旋涡气动窗口(ADW)产生的像差,评价ADW的光学性能,提出了一种基于一维自准直Shack-Hartmann传感器,用拼接法进行波前复原测量气动窗口的方法。采用671 nm光源作为测试光源,高帧频CCD面阵相机采集经Shack-Hartmann波前传感器聚焦的子光斑阵列,采用拼接法进行波前复原。讨论分析了波前像差中沿y方向的倾斜量、波前峰谷(PV)值和均方根(RMS)值与气动窗口工作状态的对应关系。实验结果表明,压力稳定时长曝光PV值为0.1729λ,RMS值为0.0578λ。实验数据说明了Shack-Hartmann传感器拼接法对测量ADW光学性能的可行性,对ADW的进一步优化和实际应用具有重要的工程指导意义。
测量 激光器 自由旋涡气动窗口 Shack-Hartmann波前传感器 拼接法 光学质量 
中国激光
2021, 48(23): 2304003
作者单位
摘要
1 国防科技大学智能科学学院, 湖南 长沙 410073
2 中国人民解放军31636部队, 云南 昆明 650300
夏克-哈特曼传感器是自适应光学中应用最广泛的波前传感器,它不仅可以测量大气湍流引起的畸变,还可以测量由风、温度变化和机械应力产生的镜面位置误差引起的像差。基于夏克-哈特曼传感器,推导了子孔径斜率与装配误差之间的函数关系,提出了一种基于光学系统失调前后点阵光斑质心偏差信息的计算机辅助装调方法,将装配误差求解问题转换成多目标优化问题,可采用多目标智能优化算法进行求解该问题。以某三反光学系统为例,基于Python和Zemax联合仿真进行模拟装调,仿真结果表明,经三次迭代可将失调误差校正到微米级,这可满足实际装调需求,结果验证了所提方法的正确性。
光学设计 计算机辅助装调 夏克-哈特曼传感器 失调计算 主动光学 光学装调 
光学学报
2021, 41(20): 2022001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!