作者单位
摘要
1 流体动力基础件与机电系统全国重点实验室,浙江大学机械工程学院,浙江 杭州 310027
2 极端光学技术与仪器全国重点实验室,浙江大学光电科学与工程学院,浙江 杭州 310027
3 萨本栋微米纳米科学技术研究院,厦门大学机电工程系,福建 厦门 361102
柔性微纳传感器的新兴发展对先进制造技术提出了更高要求。其中,激光融合制造充分集成激光增材、等材、减材加工形式,凭借高精度、非接触、机理丰富、灵活可控、高效环保、多材料兼容等特点突破了传统制造在多任务、多线程、多功能复合加工中的局限,通过激光与物质相互作用实现跨尺度“控形”与“控性”,为各类柔性微纳传感器的结构-材料-功能一体化制造开辟了新途径。本文首先分析激光增材、等材与减材制造的技术特点与典型目标材料,展示激光融合制造的技术优势,接着针对近年来激光融合制造在柔性物理、化学、电生理与多模态微纳传感器中的典型应用展开讨论,最后对该技术面临的挑战以及未来发展趋势进行了总结与展望,通过多学科交叉互融,开辟柔性微纳传感器制造新路径,拓展激光制造技术的应用场景。
激光融合制造 激光-物质相互作用 微纳制造 柔性电子 柔性微纳传感器 
中国激光
2024, 51(4): 0402403
Author Affiliations
Abstract
Bayesian optimization gamma rays laser–solid interactions machine learning radiation reaction 
High Power Laser Science and Engineering
2024, 12(1): 01000e12
作者单位
摘要
1 中国科学院西安光学精密机械研究所 阿秒科学与技术研究中心,西安 710119
2 中国科学院大学 光电学院,北京 101408
飞秒磁场脉冲对研究超快磁化、超快退磁、超快磁存储和自旋超快动力学等过程具有重要意义。传统的脉冲磁场受限于脉冲电源性能无法获得毫秒量级以下的超短脉冲磁场,无法研究飞秒尺度的磁动力学过程。利用超短脉冲激光驱动等离子体产生旋转电流是目前产生飞秒磁场脉冲的有效方法。本文利用质点网格法模拟圆偏振拉盖尔高斯光束驱动等离子体中的电子运动从而产生光电流以及飞秒磁脉冲的过程,模拟产生了特斯拉量级的飞秒超短磁脉冲,并系统讨论了驱动激光强度与等离子体密度对磁脉冲的影响。结果表明,脉冲磁场的脉宽与驱动光一致,其强度随着激光场强度、等离子体密度增加而增加。通过本文研究寻找产生飞秒磁脉冲的优化实验参数,有望将超快磁动力学研究推进到飞秒时间尺度。
飞秒磁场脉冲 拉盖尔高斯光束 圆偏振涡旋激光 激光-等离子体相互作用 Particle-In-Cell方法 Femtosecond magnetic field pulses Laguerre Gaussian beam Circularly polarized vortex laser Laser-plasma interactions Particle-In-Cell method 
光子学报
2023, 52(9): 0932001
Xinyu Wang 1,2,3Yihua Hu 1,2,3,*Xing Yang 1,2,3,**Youlin Gu 1,2,3[ ... ]Peng Wang 4
Author Affiliations
Abstract
1 Electronic Countermeasure Institute, National University of Defense Technology, Hefei 230037, China
2 State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China
3 Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
4 Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230037, China
Bioaerosols exhibit significant broadband extinction performance and have vital impacts on climate change, optical detection, communication, disease transmission, and the development of optical attenuation materials. Microbial spores and microbial hyphae represent two primary forms of bioaerosol particles. However, a comprehensive investigation and comparison of their optical properties have not been conducted yet. In this paper, the spectra of spores and hyphae were tested, and the absorption peaks, component contents, and protein structural differences were compared. Accurate structural models were established, and the optical attenuation parameters were calculated. Aerosol chamber experiments were conducted to verify the optical attenuation performance of microbial spores and hyphae in the mid-infrared and far-infrared spectral bands. Results demonstrate that selecting spores and hyphae can significantly reduce the average transmittance from 21.2% to 6.4% in the mid-infrared band and from 31.3% to 19.6% in the far-infrared band within three minutes. The conclusions have significant implications for the selection of high-performance microbial optical attenuation materials as well as for the rapid detection of bioaerosol types in research on climate change and the spread of pathogenic aerosols.
bioaerosol optical properties optical materials light-matter interactions Fourier transform infrared spectra 
Chinese Optics Letters
2023, 21(9): 090006
作者单位
摘要
北京航空航天大学 化学学院,北京 100191
液晶显示领域中的一个重要研究方向是液晶电光性能的改善。近年来,液晶-纳米科学见证了纳米掺杂增强液晶电光性质的范式转变。一方面,纳米颗粒具备特殊的理化性质能有效改善分散基质的性质;此外,纳米掺杂的液晶复合体系制备工艺简单、电光特性卓越,在显示领域占据重要地位。利用液晶与纳米颗粒间的不同相互作用,研究人员设计了一系列具有高稳定性、低成本、可调谐和可持续的电光器件。然而,纳米颗粒的掺杂有可能造成结构缺陷,不利于液晶的稳定。因此,纳米颗粒的选择是影响液晶电光性能的关键。本文概述了液晶-纳米复合体系的电光特性,着重讨论了纳米颗粒与液晶分子间可能存在的相互作用。同时,综述纳米颗粒掺杂液晶的研究现状,根据纳米颗粒类型总结了纳米掺杂对液晶电光性能的影响,并在此基础上,对未来液晶显示技术与纳米技术的结合进行了展望。
液晶 纳米颗粒 电光性能 相互作用 liquid crystals nanoparticles electro-optical performance interactions 
液晶与显示
2023, 38(9): 1149
Author Affiliations
Abstract
1 SUPA Department of Physics, University of Strathclyde, Glasgow, UK
2 The Cockcroft Institute, Sci-Tech Daresbury, Warrington, UK
The optimum parameters for the generation of synchrotron radiation in ultraintense laser pulse interactions with planar foils are investigated with the application of Bayesian optimization, via Gaussian process regression, to 2D particle-in-cell simulations. Individual properties of the synchrotron emission, such as the yield, are maximized, and simultaneous mitigation of bremsstrahlung emission is achieved with multi-variate objective functions. The angle-of-incidence of the laser pulse onto the target is shown to strongly influence the synchrotron yield and angular profile, with oblique incidence producing the optimal results. This is further explored in 3D simulations, in which additional control of the spatial profile of synchrotron emission is demonstrated by varying the polarization of the laser light. The results demonstrate the utility of applying a machine learning-based optimization approach and provide new insights into the physics of radiation generation in laser–foil interactions, which will inform the design of experiments in the quantum electrodynamics (QED)-plasma regime.
Bayesian optimization gamma rays laser–solid interactions machine learning radiation reaction 
High Power Laser Science and Engineering
2023, 11(3): 03000e34
Author Affiliations
Abstract
1 School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
2 The John Adams Institute for Accelerator Science, Imperial College London, London, UK
3 York Plasma Institute, School of Physics, Engineering and Technology, University of York, York, UK
4 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
5 Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, USA
6 Ergodic LLC, San Francisco, USA
7 Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density.
laser plasma interactions particle acceleration neural networks machine learning 
High Power Laser Science and Engineering
2023, 11(1): 010000e9
Author Affiliations
Abstract
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110010, China
2 Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
3 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
4 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
The emerging two-dimensional materials, particularly transition metal dichalcogenides (TMDs), are known to exhibit valley degree of freedom with long valley lifetime, which hold great promises in the implementation of valleytronic devices. Especially, light–valley interactions have attracted attentions in these systems, as the electrical generation of valley magnetization can be readily achieved — a rather different route toward magnetoelectric (ME) effect as compared to that from conventional electron spins. However, so far, the moiré patterns constructed with twisted bilayer TMDs remain largely unexplored in regard of their valley spin polarizations, even though the symmetry might be distinct from the AB stacked bilayer TMDs. Here, we study the valley Hall effect (VHE) in 40°-twisted chemical vapor deposition (CVD) grown WS2 moiré transistors, using optical Kerr rotation measurements at 20 K. We observe a clear gate tunable spatial distribution of the valley carrier imbalance induced by the VHE when a current is exerted in the system.The emerging two-dimensional materials, particularly transition metal dichalcogenides (TMDs), are known to exhibit valley degree of freedom with long valley lifetime, which hold great promises in the implementation of valleytronic devices. Especially, light–valley interactions have attracted attentions in these systems, as the electrical generation of valley magnetization can be readily achieved — a rather different route toward magnetoelectric (ME) effect as compared to that from conventional electron spins. However, so far, the moiré patterns constructed with twisted bilayer TMDs remain largely unexplored in regard of their valley spin polarizations, even though the symmetry might be distinct from the AB stacked bilayer TMDs. Here, we study the valley Hall effect (VHE) in 40°-twisted chemical vapor deposition (CVD) grown WS2 moiré transistors, using optical Kerr rotation measurements at 20 K. We observe a clear gate tunable spatial distribution of the valley carrier imbalance induced by the VHE when a current is exerted in the system.
transition metal dichalcogenides valleytronic devices light–valley interactions valley Hall effect 
Journal of Semiconductors
2023, 44(1): 012001
王磊 1张栩 1王熠 2王琳 1[ ... ]陈岐岱 1,*
作者单位
摘要
1 吉林大学电子科学与工程学院,集成光电子学国家重点实验室,吉林 长春 130012
2 清华大学精密仪器系,精密测试技术与仪器国家重点实验室,北京 100084
3 吉林大学材料科学与工程学院,吉林 长春 130012
面向大数据存储,总结当前冷数据存储的主要方式及特点,针对长寿命和高容量的需求,介绍飞秒激光永久光存储的概念和基本存储内涵;围绕透明介质材料体内改性的类型,依次介绍三维光存储和五维光存储的历史发展过程;阐述了当前具有双折射特性的存储单元形成机制,超百层的高密度存储技术,225 kB/s单通道、潜在MB/s多通道的快速直写机制;并从纳米区域的电场连续性边界条件和光学衍射极限出发,展望飞秒激光永久光存储在存储容量和写入速度方面的挑战。
光电器件加工 飞秒激光 激光材料加工 光与物质相互作用 光存储 纳米光栅 
中国激光
2022, 49(10): 1002504
陈军华 1,*王浩 1郑阳 1程琬滢 1[ ... ]勾茜 1,3
作者单位
摘要
1 重庆大学化学化工学院, 重庆 401331
2 复旦大学化学系, 上海 200438
3 重庆理论与计算化学重点实验室, 重庆 401331
作为构建宏观物质及维持其结构的重要驱动力, 非共价相互作用虽个体较弱, 但其协同作用不可忽视。经过多年来对其物理本质及原理的不断探索, 非共价键的研究重心已经从传统氢键延伸到其他包含多种多样结构和能量的弱相互作用。在众多的实验手段中, 气相分子的转动光谱数据可以提供其他手段无可比拟的高精度, 而且避免了凝聚相实验数据中环境因素的干扰, 能够揭示各种非共价键相互作用的本质。同时,转动光谱对研究对象的质量分布极其敏感, 即使微小的质量分布变化 (如同位素取代、异构化等) 也会引起其转动光谱谱图的明显变化。因此可以说转动光谱是最准确的高分辨分子光谱技术。首先简要介绍了转动光谱的基本原理和表征非共价相互作用的优势, 随后全面综述了转动光谱研究 σ-hole 和 π-hole 非共价相互作用的最新成果, 展示了转动光谱在评估非共价相互作用体系的结构和能量方面的能力, 预示着其从传统基础研究转移到超分子化学和晶体工程等相关领域研究的可能性。
光谱学 非共价相互作用 转动光谱 spectroscopy non-covalent interactions σ-hole σ-hole π-hole π-hole rotational spectroscopy 
量子电子学报
2021, 38(6): 751

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!