作者单位
摘要
淮北师范大学物理与电子信息学院, 安徽 淮北 235000
基于多轴差分吸收光谱技术 (MAX-DOAS) 反演 NO2 柱浓度的方法, 构建了相应的地基 MAX-DOAS 系统, 开展了 NO2 柱浓度变化特征的观测。反演中选取天顶方向的光谱作为参考光谱, 通过非线性最小二乘法反演出 NO2 斜柱浓度 (SCD), 结合不同观测方向的斜柱浓度得到 NO2 差分斜柱浓度 (dSCD), 再利用几何近似法得到大气质量因子 (AMF), 最终获取 NO2 垂直柱浓度 (VCD)。于 2019 年 6 月至 2020 年 5 月在淮北地区开展了为期一年的外场实验, 研究结果表明淮北地区 NO2 VCD的月均值在观测期间内呈现倒“U”型变化, 在 12 月份达到最高值 2.13×1016 molecules·cm-2, 在 8 月份达到最低值 5.23×1015 molecules·cm-2。将 MAX-DOAS 观测结果的日均值与 OMI 卫星 (云系数分别为 0 多轴差分吸收光谱技术 NO2 垂直柱浓度 对比分析 multi-axis differential optical absorption spectro OMI OMI NO2 vertical column density contrastive analysis 
大气与环境光学学报
2021, 16(2): 107
作者单位
摘要
淮北师范大学,物理与电子信息学院,安徽 淮北 235000
基于2018年12月8日~12月31日淮北地区多轴差分吸收光谱技术(MAX-DOAS)获得的太阳散射光谱观测数据,反演了该地区NO2对流层柱浓度, 并分析了冬季不同天气下NO2浓度日变化特征。观测结果表明NO2浓度高值出现在12月18日~12月27日期间,日均值最大值6.83×1016 molecules/cm2出现在12月27日,约为日均值最低值的2.9倍。结合风场轨迹模型研究了不同大气条件下的风场,发现在NO2浓度较低时段主要为 偏北风场, NO2浓度高值时段偏南风场增加,表明城区产生的污染向观测区域进行了输送。将MAX-DOAS结果与OMI卫星结果进行了 对比,发现两者具有较好的一致性(R2=0.88)。
多轴差分吸收光谱技术 NO2垂直柱浓度 变化特征 对比分析 multi-axis differential optical absorption spectro NO2 vertical column density variation characteristics contrastive analysis 
大气与环境光学学报
2020, 15(3): 217
李晓梅 1,2,*谢品华 1,2,3徐晋 1李昂 1[ ... ]吴子扬 2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学科学岛分院, 安徽 合肥 230026
3 中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361021
大气气溶胶的直径从几纳米到几十微米不等, 对大气辐射评估、 全球气候变化、 当地空气质量和能见度以及人类健康都有着直接或间接影响, 尤其秋冬季节是雾霾高发期, 更有利于大气气溶胶的生成、 转化和积累。 目前, 用于气溶胶信息观测的技术有很多, 包括激光雷达、 太阳光度计、 华盖计、 卫星遥感等。 多轴差分光学吸收光谱(MAX-DOAS)技术是一种被动遥测式光谱设备, 具有稳定、 可实时连续监测等特点, 可同时获取多种痕量气体的浓度信息, 且能反演气溶胶光学厚度(AOD)和气溶胶廓线。 介绍了MAX-DOAS反演气溶胶信息的算法, 并于2017年12月至2018年1月, 在合肥市科学岛开展了MAX-DOAS观测, 观测方位角为0度(正北), 垂直方向上从低到高扫描10个仰角; 反演时取中午时段的天顶方向测量光谱作为参考光谱。 在337~370 nm波段, 利用QDOAS软件计算出O4斜柱浓度(DSCD), 然后再利用气溶胶廓线反演算法(PriAM)反演出AOD和气溶胶消光系数(AE)。 将结果与太阳光度计CE318测得的AOD做对比, 小时均值和日均值的相关性系数均为0.91, 结果表明MAX-DOAS在获取气溶胶信息方面具有较高的可靠性。 同时, 将MAX-DOAS获得的近地面气溶胶消光系数与地面站点的点式仪器测得的PM2.5浓度进行了相关性对比, 日均值和小时均值线性拟合相关系数r分别为0.83和0.62, 进一步验证了MAX-DOAS获取气溶胶信息的可靠性。 由于冬季是雾霾的高发期, AOD值较高, 选取2017年12月3日至6日的一次雾霾过程, 廓线结果表明气溶胶主要分布在1.5 km以下, 结合当时的风场信息及雾霾期间的气流后向轨迹图, 可知此次污染是西北方向污染气团输送导致的。
多轴差分吸收光谱 太阳光度计 溶胶光学厚度 气溶胶消光系数 Multi-axis differential optical absorption spectro Sorlar photometer Aerosol optical thickness Aerosol extinction coefficient 
光谱学与光谱分析
2020, 40(3): 712
田鑫 1,2徐晋 2谢品华 1,2,3李昂 2[ ... ]吴子扬 1,2
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心, 福建 厦门 361021
甲醛(HCHO)在大气光化学反应中扮演着重要的角色, 是一种重要的气溶胶前体物和光化学氧化指示剂。 大气中HCHO的来源主要是直接排放和光化学反应生成。 大气光化学反应与太阳辐射强度密切相关, 一般来说, 太阳辐射强度越强, 大气光化学反应越剧烈, HCHO的二次来源产率也就越高。 故针对HCHO的研究成为当今大气环境研究的一个重要课题。 介绍了基于多轴差分吸收光谱技术 (MAX-DOAS) 获取对流层HCHO垂直柱浓度(VCD)及垂直廓线的反演算法。 该方法是基于非线性最优估算法的两步反演方法, 首先反演气溶胶垂直廓线, 然后在此基础上反演HCHO垂直廓线。 其中第二步气体廓线反演时, 气溶胶廓线线型会影响气体廓线反演的权重函数从而影响气体垂直廓线反演的精度, 为此, 研究了三种不同气溶胶廓线类型(指数型、 高斯型和玻尔兹曼型)对HCHO垂直廓线反演的影响。 结果表明, 在三种气溶胶廓线类型条件下, 当气溶胶光学厚度(AOD)为0.1时, 气体反演的总误差、 平均核的包络线、 灵敏高度上限、 自由度以及HCHO垂直廓线结果都比较接近, 即气溶胶廓线类型对HCHO垂直廓线反演的影响很小。 而对于200 m以下(含200 m)的近地面, 通过指数型、 高斯型和玻尔兹曼型气溶胶廓线获取的HCHO体积混合比(VMR)与真实HCHO VMR的差异分别为36.89%, -0.04%和23.30%, 表明使用指数型和玻尔兹曼型气溶胶廓线类型反演HCHO垂直廓线会高估近地面HCHO浓度, 而高斯型气溶胶廓线类型则正好相反。 此外, 还反演了北京国科大站点一次污染过程中HCHO的垂直廓线, 分析了污染过程中HCHO的垂直分布特征。 结果表明, HCHO主要集中在1.0 km以下且一天中高值出现在午后, 主要来自于本地产生, 即西南风将污染的VOCs气团带到观测点, 经过本地的光化学反应产生HCHO而积累, 造成了此次HCHO浓度升高。 结合气流后向轨迹分析, 来自站点西南方向的输送是引起HCHO污染的重要原因。 故观测站点的HCHO主要受污染输送和二次氧化的影响。 最后对比了此次污染过程中不同气溶胶条件对HCHO廓线反演的误差影响。 结果显示, 气溶胶浓度高时, 反演的灵敏高度和自由度下降, 反演的高度分辨率下降, 且反演总误差增加。
多轴差分吸收光谱 HCHO垂直分布 反演算法 气溶胶廓线类型 污染过程 Multi-axis differential optical absorption spectro The vertical profile in HCHO Inversion algorithm Aerosol profiles types Polluted episode 
光谱学与光谱分析
2019, 39(8): 2325
牟福生 1,2李昂 1吴丰成 1谢品华 1,3,4[ ... ]李素文 2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
2 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
3 中国科学院城市环境研究所中国科学院城市大气环境研究卓越创新中心, 福建 厦门 361021
4 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230031
5 马普化学研究所, 美因茨 D-55128, 德国
Ring效应是指大气分子对太阳光的转动拉曼散射致使太阳光中夫琅禾费线变浅的现象。气溶胶能够改变光子在大气中的路径和大气散射性质,最终影响夫琅禾费线的填充程度,因此可以通过观测Ring效应强度获取气溶胶信息。分析了Ring效应对气溶胶光学参量(气溶胶光学厚度、单次散射反照率、非对称因子等)的敏感性,发展了一种结合大气辐射传输模型并利用地基多轴差分吸收光谱(MAX-DOAS)仪器观测的Ring效应获取气溶胶光学特性的新方法。将MAX-DOAS 反演结果和太阳光度计的观测结果进行了对比,两者一致性较好。研究表明,基于地基MAX-DOAS观测的Ring 效应可以实现气溶胶光学特性的探测。
大气光学 大气Ring效应 多轴差分吸收光谱 气溶胶 非对称因子 
光学学报
2017, 37(7): 0701001
田鑫 1,2李昂 2,*徐晋 2谢品华 1,2,3[ ... ]王汝雯 2
作者单位
摘要
1 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230026
2 中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
3 中国科学院区域大气环境研究卓越创新中心,中国科学院城市环境研究所, 福建 厦门 361021
基于多轴差分吸收光谱技术(multi-axis differential optical absorption spectroscopy, MAX-DOAS)获得了对流层SO2垂直柱浓度。采用不同 参考谱和不同波段来获得SO2差分斜柱浓度,通过对比发现,当圈天顶光谱作为参考谱的反演误差最小,且全天相对稳定波动小,误差小于5%。通过 六个波段的对比选取了最优反演波段为307.5~315 nm。结合地面气象数据对2015年10月14日~18日的污染过程进行了研究,数据分析表明 风速和风向是影响监测点SO2浓度的两个重要因素,城市和电厂产生的SO2会在东风和南风的影响下向监测点输送。通过研究表明, MAX-DOAS能够准确反演大气对流层SO2垂直柱浓度信息,对于探究城市大气对流层SO2垂直柱浓度、卫星校验、模型校验以及污染输送的研究具有重要意义。
多轴差分吸收光谱技术 对流层SO2垂直柱浓度 最优反演波段 输送 multi-axis differential optical absorption spectro vertical column density of tropospheric SO2 optimal retrieval wave band transportion 
大气与环境光学学报
2017, 12(1): 33
牟福生 1,2,*谢品华 1,3李昂 1王杨 1[ ... ]孙友文 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 环境光学与技术重点实验室, 安徽 合肥 230031
2 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
3 中国科学技术大学环境科学与光电技术学院, 安徽 合肥 230031
Ring效应是指大气中O2和N2分子对太阳光的转动拉曼散射致使太阳夫琅禾费结构变浅(被填充)的现象。 大气气溶胶能够改变光子在大气中的光程和大气散射性质, 进而影响到光子发生转动拉曼散射的几率(RSP), 最终影响填充效应。 通过观测RSP在不同气溶胶状态下的变化, 可以反演得到气溶胶参量信息。 采用地基多轴差分吸收光谱(multi-axis differential optical absorption spectroscopy, MAX-DOAS)方法在晴朗无云天气下对Ring效应进行了观测, 并把测量值和模型值进行了对比, 两者一致性较好; 选取大气辐射传输模型McArtim研究了在不同大气条件下Ring效应对气溶胶参数等的灵敏度, 结果表明在大多数测量情况下, 气溶胶光学厚度和边界层高度对RSP影响较大, 在90°仰角时, AOD从0.1增加到1, RSP减少了24.6%, 边界层高度从1 km增加到3 km, RSP增加了4.4%。 研究表明, Ring效应对气溶胶光学厚度和边界层高度较为敏感, 这为反演气溶胶的垂直分布提供了一种新方法。
Ring效应 转动拉曼散射几率 气溶胶参量 MAX-DOAS Multi-axis differential optical absorption spectro Ring effect Rotational Raman scattering possibility Aerosol parameter 
光谱学与光谱分析
2016, 36(9): 2725
作者单位
摘要
中国科学院安徽光学精密机械研究所中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
随着全球工业化速度加快和人口的增多,大气环境问题日益突出, NO2 和气溶胶在大气化学中扮演着重要的角 色。地基多轴差分吸收光谱技术(MAX-DOAS)基于被动DOAS原理,近年来已成功应用于大气痕量气体柱浓度和气溶 胶光学厚度(AOD)测量方面。基于被动DOAS算法对合肥秸秆燃烧期间NO2 柱浓度以及气溶胶光学厚度进行 了观测,并把对流层柱浓度和臭氧监测仪(Ozone Monitoring Instrument, OMI)结果进行对比;测量的气溶胶光学厚度和太阳光度计(CE318)进行了对比。结 果表明, MAX-DOAS测量结果要高于卫星值, 11月6日MAX-DOAS测量NO2 柱浓度日均值为OMI的1.9倍;二者在无云 条件下一致性较好;MAX-DOAS反演AOD和太阳光度计结果相关性在0.9以上。
垂直柱浓度 气溶胶光学厚度 太阳光度计 MAX-DOAS multi axis differential optical absorption spectro vertical column density aerosol optical depth sunphotometer 
大气与环境光学学报
2015, 10(3): 231
作者单位
摘要
中国科学院安徽光学精密机械研究所 中国科学院环境光学与技术重点实验室, 安徽合肥?230031
介绍了基于AVR单片机的多轴差分吸收光谱仪(multi-axis differential optical absorption spectroscopy, MAX-DOAS)控 制系统设计。采用Atmega128 AVR单片机实现MAX-DOAS系统的数据通信、背景电机控制、扫描电机控制及温度 检测和控制,并给出了整个控制系统的电路设计方案及软件实现过程。设计的控制系统可以使MAX-DOAS系统实 现痕量气体垂直柱浓度与廓线的自动监测。
被动多轴差分吸收光谱仪 痕量气体 multi-axis differential optical absorption spectro trace gas Atmega128 Atmega128 
大气与环境光学学报
2012, 7(3): 214
作者单位
摘要
1 中国科学技术大学 精密机械与精密仪器系, 安徽 合肥?230026
2 中国科学院安徽光学精密机械研究所 中国科学院环境光学与技术重点实验室, 安徽合肥?230031
O4 斜柱浓度的准确获取,对气溶胶廓线反演具有重要意义。介绍了基于被动多轴差分吸收 光谱仪(MAX-DOAS)监测O4 斜柱浓度的误差修正方法,用于准确获取O4 斜柱浓度。通过 对比30°仰角O4 斜柱浓度MAX-DOAS测量结果和大气辐射传输模型模拟结果,获得修 正系数,利用修正系数修正各个角度的斜柱浓度值,消除O4 吸收截面不准确造成的反演结果 误差,提高了O4 斜柱浓度精度。研究方法应用于合肥地区O4 斜柱浓度的准确监测,为下一 步气溶胶廓线精确反演提供了数据支持。
被动多轴差分吸收光谱技术 O4 斜柱浓度 气溶胶廓线 吸收截面 multi axis differential optical absorption spectro O4 slant column density aerosol profile cross section 
大气与环境光学学报
2012, 7(2): 116

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!