作者单位
摘要
1 山东科技大学测绘与空间信息学院,山东 青岛 266590
2 武汉大学测绘遥感信息工程国家重点实验室,湖北 武汉 430079
3 自然资源部第一海洋研究所,山东 青岛 266061
4 中国科学院微小卫星创新研究院,上海 201210
5 上海微小卫星工程中心,上海 201210
提出一种顾及姿态误差时空变化的全谱段光谱成像仪(VIMS)定位精度提升方法。通过分析高分五号02星(GF-5B卫星)181 d的星敏感器低频误差规律,以分段傅里叶级数模型为基础,利用时序化、多空间补偿策略,统一了非基准与基准定姿模式之间的低频误差特性,补偿低频误差对影像几何定位的影响。研究结果表明,所提方法将VIMS可见光近红外影像无地面控制几何定位精度从4.274 pixel优化至1.867 pixel,且对不同时相、不同区域的光学影像均有良好的精度提升效果。
遥感 姿态低频误差 几何定位精度 高分五号02星 全谱段光谱成像仪 
光学学报
2024, 44(12): 1228004
作者单位
摘要
1 中国科学院光电技术研究所, 成都 610209
2 中国科学院大学, 北京 100049
提出一种针对高陡度非球面元件表面中频误差的主动平滑技术。通过构建离轴高陡度非球面平滑加工接触模型, 获得加工过程中的不吻合度分布, 设计主动平滑工具。采用有限元分析方法模拟主动平滑过程中磨盘材料、厚度及结构之间的关系, 获得优选的主动平滑参数。实验结果验证了计算模型的准确性及主动平滑技术对于高陡度非球面元件的中频误差具有更好的平滑效果。
非球面元件 主动平滑 中频误差 光学加工 aspheric element active smoothing mid-spatial frequency error optical processing 
半导体光电
2022, 43(2): 358
杨航 1陈英 1黄文 2韩明 1[ ... ]蒋蓉 1
作者单位
摘要
1 遵义师范学院 工学院,贵州 遵义 563006
2 中国工程物理研究院 机械制造工艺研究所,四川 绵阳 621900
3 华中光电技术研究所 武汉光电国家实验室,湖北 武汉 430073
磁流变抛光能够高效去除光学元件表面的低频误差,但同时也引入了中频误差,而中频误差的存在对光学系统的性能造成了严重影响,必须对其进行有效控制。对常用的光栅轨迹和螺旋轨迹进行了研究,发现规则的抛光轨迹导致卷积过程与实际去除过程不一致,会引入对称的迭代误差,而迭代误差是中频误差恶化的重要因素。基于对光栅轨迹和螺旋轨迹的研究,提出了一种变距螺旋矩阵轨迹优化方法,以降低光学元件中频误差。该轨迹通过打乱螺旋矩阵轨迹的螺距保留了光栅轨迹和螺旋轨迹简单易行的优点,同时也改变了轨迹线间的随机性。通过对加工前后的面形进行功率谱分析,验证了该轨迹能够有效降低其表面的中频误差,较光栅线和螺旋线中频收敛效率综合提高了26.59%。
磁流变抛光 中频误差 功率谱密度 螺旋矩阵轨迹 轨迹优化 magnetorheological polishing intermediate frequency error power spectral density spiral matrix trajectory trajectory optimization 
红外与激光工程
2022, 51(3): 20210443
董子铭 1,2,3,*章亚男 1刘志刚 2,3,**焦翔 2,3[ ... ]林炜恒 2,3
作者单位
摘要
1 上海大学机电工程与自动化学院, 上海 200444
2 中国科学院上海光学精密机械研究所高功率激光物理联合实验室, 上海 201800
3 中国科学院中国工程物理研究院高功率激光物理联合实验室, 上海 201800
在计算机控制光学表面抛光中,高斯形状的去除函数是一种理想的去除函数,然而传统的双转子运动抛光产生的去除函数与高斯形状有较大偏差,不够平滑,因此会在被抛光表面引入较大的中频误差,影响高功率激光系统的性能。针对该问题,在传统双转子抛光的基础上,本文提出了偏心双转子运动抛光技术,并建立了数学模型。理论分析表明,偏心双转子抛光可以产生更加接近高斯形状的去除函数。对各关键参数进行优化,理论上获得了拟合优度(R2)达到0.9986的高斯型去除函数。进行了偏心双转子定点抛光实验和光栅轨迹数控抛光实验,定点抛光实验中获得了R2=0.9895的高斯型去除函数,验证了理论分析的正确性;光栅轨迹数控抛光实验证明了偏心双转子抛光技术较传统双转子抛光技术对中频误差有更好的抑制作用。
光学制造 小磨头抛光 高斯型去除函数 中频误差 偏心双转子运动 
中国激光
2021, 48(24): 2404002
作者单位
摘要
1 上海航天控制技术研究所, 上海 201109
2 上海市空间智能控制重点实验室, 上海 201109
为了抑制地面标定与在轨工况差异引入的低频误差,提出了一种低频误差在轨补偿方法,基于地面标定求得主点、焦距初始值与畸变系数,筛选出符合条件的星对,以星对角距误差最小为准则,基于扩展卡尔曼滤波方法,实时更新星敏感器的焦距值.与现有的多参数同时更新方法相比,该方法具有更快的收敛速度与更高的鲁棒性.多次观星试验和在轨飞行验证了本方法的有效性,星对角距误差均值减小90%以上,低频误差减小40%以上.
低频误差 在轨 焦距 扩展卡尔曼滤波 星对角距误差 Low spatial frequency error On-orbit Focal length Extended Kalman filter Angle distance error 
光子学报
2020, 49(1): 0112005
钟波 1,2陈贤华 1王健 1周炼 1[ ... ]邓文辉 1
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 电子科技大学 机械电子工程学院, 四川 成都 610054
针对强激光系统所需大口径非球面元件高精度、批量化的加工需求, 提出了一种气囊抛光技术与柔性沥青小工具抛光技术相结合的大口径非球面元件高效制造方法。采用气囊抛光技术进行非球面保形抛光和快速修正抛光, 实现磨削缺陷层快速去除以及低频误差快速修正。采用柔性沥青工具匀滑抛光技术, 在低频误差不被恶化的情况下, 控制元件中高频误差。在抛光过程中, 利用球面干涉仪搭建的自准直波前干涉检测系统和粗糙度仪对非球面元件进行全频段误差检测。基于上述加工与检测方法完成了430 mm×430 mm口径离轴非球面透镜样件实验加工, 实验结果为元件通光口径内透射波前PV=0.1λ, GRMS=5.7 nm/cm, PSD1 RMS=1.76 nm, PSD2 RMS=1 nm, Rq=0.61 nm, 并且中频段功率谱密度曲线均在要求的评判曲线之下。实验结果表明, 离轴非球面透镜样件全频段指标均达到了合格指标要求。所述制造方法也适用于其他类型大口径非球面光学元件的高精度加工。
先进光学制造 全频段误差 气囊抛光 沥青抛光 advanced optical manufacturing full frequency error bonnet polishing pitch polishing 
红外与激光工程
2018, 47(7): 0718003
胡雄超 1,2,*毛晓楠 1,2吴永康 1,2闫晓军 1,2[ ... ]王兆龙 1,2
作者单位
摘要
1 上海航天控制技术研究所, 上海 201109
2 中国航天科技集团公司红外探测技术研发中心, 上海 201109
详细介绍了一种星敏感器像素频率误差补偿方法并结合实际实验数据对其补偿效果进行验证。首先依据阈值分割的星点提取算法, 分析了像素频率误差产生的几个主要原因。然后改进原有的星点质心定位点扩散函数, 提出了一种基于亚像元坐标的像素频率误差补偿方法。最后通过星敏感器微步距实验, 与正弦曲线法比较。实验结果表明: 在视场中心区域, 使用该方法对采样点补偿后像素频率误差减少了65.2%, 优于正弦曲线法的52.7%; 使用视场中心的误差补偿公式对视场边缘的采样点补偿, 像素频率误差减少58.7%, 优于正弦曲线法的41.9%。由实验结果可得: 较之于正弦曲线法, 该误差修正方法不仅具有更好的误差补偿效果, 而且在视场范围内具有较强的通用性。
星敏感器 亚像元坐标 像素频率误差 误差补偿 star sensor sub-pixel coordinates pixel frequency error error compensation 
红外与激光工程
2017, 46(7): 0717006
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100039
为了更好地对于大口径望远镜中频误差进行评价与分配, 本文引入了结构函数来进行研究。本文首先对于结构函数的基本性质进行了推导, 并与传统的误差均方根(RMS)进行比较, 表明了其表征不同尺度误差的能力。之后分析了系统波前在不同的评价尺度下的统计特性差异, 得出在较小尺度下, 系统的误差分布可以较好的服从正态分布, 而随着尺度的增加(如大于100mm)会逐渐偏离正态分布的结论。然后根据结构函数的基本性质, 提出了一种可以同时考虑诸多误差源的大口径望远镜中频误差分配方法。结合美国三十米望远镜(TMT)团队所提出的标准化点源敏感性(normalized Point Source Sensitivity , PSSn), 建立起了由结构函数到标准化点源敏感性的换算关系, 通过此方法来进行误差分配指标间的交叉验证以及与其他单元技术之间的对接。最后, 根据本文所提出的方法, 对于某大口径望远镜的主镜系统进行了误差分配, 得到在大尺度均方根为25nm, 粗糙度为1nm,中频尺度为250mm, 大气相干长度为0.4m(检测环境)的要求下, 该系统的结构函数满足要求, 同时由要求结构函数所计算得到的PSSn=0.999 6大于由镜面数据直接得到的PSSn=0.999 5, 同样满足要求。
大口径望远镜 标准化点源敏感性 中频误差 结构函数 large telescope normalized Point Source Sensitivity middle frequency error structure function 
光学 精密工程
2017, 25(2): 433
作者单位
摘要
四川大学电子信息学院, 四川 成都 610064
为了确认抛光过程中抛光盘大小对光学元件表面中频误差的影响,对双轴式平面研磨抛光的去除特性进行了分析。推导了去除函数的表达式,计算了抛光盘大小对元件的去除量以及其分布的影响。结果表明,不论抛光盘大小如何改变,回转中心的去除量总是最大,去除量最大区域所对应半径随着抛光盘半径的增大而增大,利用这一关系确定了导致中频误差产生的磨头尺寸。通过选择合适的抛光盘尺寸,可以对最大去除量区域范围进行控制,从而有效减少工件在研磨抛光过程中中频误差的产生。
平面研磨 去除量 去除函数 中频误差 plane polishing removal quantity removal function mid-spatial-frequency error 
光学与光电技术
2017, 15(1): 54
作者单位
摘要
成都精密光学工程研究中心, 四川 成都 610041
为了利用磁流变加工实现对大口径平面光学元件波前中频误差的控制, 研究了磁流变抛光去除函数的频谱误差校正能力和磁流变加工残余误差抑制方法。首先, 比较了模拟加工前后元件中频功率谱密度(PSD1)误差和元件PSD曲线的变化, 分析了磁流变去除函数的可修正频谱误差范围。然后, 利用均匀去除方法分析了加工深度、加工轨迹间距和去除函数尺寸等磁流变加工参数对中频PSD2误差的影响, 提出了抑制中频PSD2误差的方法。最后, 对一块400 mm×400 mm口径平面元件的频谱误差进行了磁流变加工控制实验。实验显示: 3次迭代加工后, 该元件的波前PV由加工前的0.6 λ收敛至0.1 λ, 中频PSD1误差由5.57 nm收敛至1.36 nm, PSD2由0.95 nm变化至0.88 nm。结果表明: 通过优化磁流变加工参数并合理选择加工策略, 可实现磁流变加工对大口径平面光学元件中频误差的收敛控制。
磁流变加工 平面光学元件 中频误差 功率谱密度 去除函数 magnetorheological finishing flat optics mid-spatial frequency error Power Spectral Density(PSD) removal function high power laser 
光学 精密工程
2016, 24(12): 3076

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!