作者单位
摘要
1 中国科学院西安光学精密机械研究所 阿秒科学与技术研究中心,西安 710119
2 中国科学院大学 光电学院,北京 101408
飞秒磁场脉冲对研究超快磁化、超快退磁、超快磁存储和自旋超快动力学等过程具有重要意义。传统的脉冲磁场受限于脉冲电源性能无法获得毫秒量级以下的超短脉冲磁场,无法研究飞秒尺度的磁动力学过程。利用超短脉冲激光驱动等离子体产生旋转电流是目前产生飞秒磁场脉冲的有效方法。本文利用质点网格法模拟圆偏振拉盖尔高斯光束驱动等离子体中的电子运动从而产生光电流以及飞秒磁脉冲的过程,模拟产生了特斯拉量级的飞秒超短磁脉冲,并系统讨论了驱动激光强度与等离子体密度对磁脉冲的影响。结果表明,脉冲磁场的脉宽与驱动光一致,其强度随着激光场强度、等离子体密度增加而增加。通过本文研究寻找产生飞秒磁脉冲的优化实验参数,有望将超快磁动力学研究推进到飞秒时间尺度。
飞秒磁场脉冲 拉盖尔高斯光束 圆偏振涡旋激光 激光-等离子体相互作用 Particle-In-Cell方法 Femtosecond magnetic field pulses Laguerre Gaussian beam Circularly polarized vortex laser Laser-plasma interactions Particle-In-Cell method 
光子学报
2023, 52(9): 0932001
Author Affiliations
Abstract
1 School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK
2 The John Adams Institute for Accelerator Science, Imperial College London, London, UK
3 York Plasma Institute, School of Physics, Engineering and Technology, University of York, York, UK
4 Central Laser Facility, STFC Rutherford Appleton Laboratory, Didcot, UK
5 Gérard Mourou Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, USA
6 Ergodic LLC, San Francisco, USA
7 Department of Physics, SUPA, University of Strathclyde, Glasgow, UK
A machine learning model was created to predict the electron spectrum generated by a GeV-class laser wakefield accelerator. The model was constructed from variational convolutional neural networks, which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty of that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior to undergoing any process that can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density.
laser plasma interactions particle acceleration neural networks machine learning 
High Power Laser Science and Engineering
2023, 11(1): 010000e9
Author Affiliations
Abstract
1 Peter Grünberg Institut (PGI-6), Forschungszentrum Jülich, Jülich, Germany
2 Institut für Laser- und Plasmaphysik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
3 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
4 CAS Center for Excellence in Ultra-intense Laser Science, Shanghai201800, China
5 JARA-FAME (Forces and Matter Experiments), Forschungszentrum Jülich and RWTH Aachen University, Aachen, Germany
6 Institut für Kernphysik (IKP-4), Forschungszentrum Jülich, Jülich, Germany
The acceleration of polarized electrons, positrons, protons and ions in strong laser and plasma fields is a very attractive option for obtaining polarized beams in the multi-mega-electron volt range. Recently, there has been substantial progress in the understanding of the dominant mechanisms leading to high degrees of polarization, in the numerical modeling of these processes and in their experimental implementation. This review paper presents an overview on the current state of the field, and on the concepts of polarized laser–plasma accelerators and of beam polarimetry.
high power laser laser-driven plasma accelerator laser–plasma interactions PIC simulations polarized particle beams 
High Power Laser Science and Engineering
2020, 8(4): 04000e36
Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
2 Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
3 Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai200240, China
4 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
Stimulated Raman scattering (SRS) in plasma in a non-eigenmode regime is studied theoretically and numerically. Different from normal SRS with the eigen electrostatic mode excited, the non-eigenmode SRS is developed at plasma density $n_{e}>0.25n_{c}$ when the laser amplitude is larger than a certain threshold. To satisfy the phase-matching conditions of frequency and wavenumber, the excited electrostatic mode has a constant frequency around half of the incident light frequency $\unicode[STIX]{x1D714}_{0}/2$, which is no longer the eigenmode of electron plasma wave $\unicode[STIX]{x1D714}_{pe}$. Both the scattered light and the electrostatic wave are trapped in plasma with their group velocities being zero. Super-hot electrons are produced by the non-eigen electrostatic wave. Our theoretical model is validated by particle-in-cell simulations. The SRS driven in this non-eigenmode regime is an important laser energy loss mechanism in the laser plasma interactions as long as the laser intensity is higher than $10^{15}~\text{W}/\text{cm}^{2}$.
hot electrons laser plasma interactions stimulated Raman scattering 
High Power Laser Science and Engineering
2020, 8(2): 02000e21
Author Affiliations
Abstract
1 York Plasma Institute, University of York, Heslington, YorkYO10 5DQ, UK
2 Hellenic Mediterranean University, Institute of Plasma Physics and Lasers - IPPL, 74100 Rethymnon, 73133 Chania, Crete, Greece
3 University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405Talence, France
4 Department of Physics, University of Ioannina, GR 45110Ioannina, Greece
5 LULI - CNRS, CEA, Sorbonne Universiés, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau Cedex, France
6 Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
7 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
8 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
9 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19, Prague 1, Czech Republic
10 LULI - CNRS, CEA, Sorbonne Universiés, Ecole Polytechnique, Institut Polytechnique de Paris - F-91128 Palaiseau Cedex, France
11 University Institute for Educational Sciences, University of Salamanca, 37008Salamanca, Spain
12 University Institute for Educational Sciences, University of Salamanca, 37008Salamanca, Spain
13 Centro de Láseres Pulsados (CLPU), Edificio M5, Parque Cientfico, C/ Adaja 8, 37185Villamayor, Salamanca, Spain
The second and final year of the Erasmus Plus programme ‘Innovative Education and Training in high power laser plasmas’, otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme, where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The ‘in-class’ time is limited to 4 weeks a year, and the programme spans 2 years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser plasma interaction physics and inertial confinement fusion. Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Hellenic Mediterranean University and supported by co-workers from the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just finished its second and final year. Six Learning Teaching Training activities have been held at the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University, the University of Salamanca and the Institute of Plasma Physics and Lasers of the Hellenic Mediterranean University. The last of these institutes hosted two 2-week-long Intensive Programmes, while the activities at the other four universities were each 5 days in length. In addition, a ‘Multiplier Event’ was held at the University of Ioannina, which will be briefly described. In this second year, the work has concentrated on training in both experimental diagnostics and simulation techniques appropriate to the study of plasma physics, high power laser matter interactions and high energy density physics. The nature of the programme will be described in detail, and some metrics relating to the activities carried out will be presented. In particular, this paper will focus on the overall assessment of the programme.
laser plasma interactions postgraduate education 
High Power Laser Science and Engineering
2020, 8(1): 010000e5
Author Affiliations
Abstract
1 York Plasma Institute, University of York, Heslington, York YO10 5DQ, UK
2 Technological Educational Institute of Crete, School of Applied Sciences, Centre for Plasma Physics and Lasers-CPPL, 74100 Rethymnon, 73133 Chania, Crete, Greece
3 Université de Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405 Talence, France
4 Department of Physics, University of Ioannina, 45110 Ioannina, Greece
5 Centre for Plasma Physics, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
6 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19, Prague 1, Czech Republic
7 LULI - CNRS, Ecole Polytechnique, CEA : Université Paris-Saclay; UPMC Univ Paris 06 : Sorbonne Universités, F-91128 Palaiseau cedex, France
8 University Institute for Educational Sciences, University of Salamanca, 37008 Salamanca, Spain
9 CLPU Laser-Plasma Chair, University of Salamanca, 37008 Salamanca, Spain
10 Centro de Láseres Pulsados (CLPU), Edificio M5. Parque Cientfico. C/ Adaja, 8. 37185 Villamayor, Salamanca, Spain
The Erasmus Plus programme ‘Innovative Education and Training in high power laser plasmas’, otherwise known as PowerLaPs, is described. The PowerLaPs programme employs an innovative paradigm in that it is a multi-centre programme where teaching takes place in five separate institutes with a range of different aims and styles of delivery. The ‘in class’ time is limited to four weeks a year, and the programme spans two years. PowerLaPs aims to train students from across Europe in theoretical, applied and laboratory skills relevant to the pursuit of research in laser–plasma interaction physics and inertial confinement fusion (ICF). Lectures are intermingled with laboratory sessions and continuous assessment activities. The programme, which is led by workers from the Technological Educational Institute (TEI) of Crete, and supported by co-workers from the Queen’s University Belfast, the University of Bordeaux, the Czech Technical University in Prague, Ecole Polytechnique, the University of Ioannina, the University of Salamanca and the University of York, has just completed its first year. Thus far three Learning Teaching Training (LTT) activities have been held, at the Queen’s University Belfast, the University of Bordeaux and the Centre for Plasma Physics and Lasers (CPPL) of TEI Crete. The last of these was a two-week long Intensive Programme (IP), while the activities at the other two universities were each five days in length. Thus far work has concentrated upon training in both theoretical and experimental work in plasma physics, high power laser–matter interactions and high energy density physics. The nature of the programme will be described in detail and some metrics relating to the activities carried out to date will be presented.
higher education inertial confinement fusion laser–plasma interactions post-graduate education 
High Power Laser Science and Engineering
2019, 7(2): 02000e23
Author Affiliations
Abstract
1 Key Laboratory of High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Key Laboratory for Laser Plasmas (MoE), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
3 Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
4 SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK
5 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
6 University of Chinese Academy of Sciences, Beijing 100049, China
Absolute instability modes due to secondary scattering of stimulated Raman scattering (SRS) in a large nonuniform plasma are studied theoretically and numerically. The backscattered light of convective SRS can be considered as a pump light with a finite bandwidth. The different frequency components of the backscattered light can be coupled to develop absolute SRS instability near their quarter-critical densities via rescattering process. The absolute SRS mode develops a Langmuir wave with a high phase velocity of about $c/\sqrt{3}$ with $c$ the light speed in vacuum. Given that most electrons are at low velocities in the linear stage, the absolute SRS mode grows with very weak Landau damping. When the interaction evolves into the nonlinear regime, the Langmuir wave can heat abundant electrons up to a few hundred keV via the SRS rescattering. Our theoretical model is validated by particle-in-cell simulations. The absolute instabilities may play a considerable role in the experiments of inertial confinement fusion.
laser plasma interactions stimulated Raman scattering two plasmon decay instability hot electron 
High Power Laser Science and Engineering
2019, 7(1): 01000e20
Author Affiliations
Abstract
1 Laboratoire d’Optique Appliquee, Ecole Polytechnique, Palaiseau, 91128, France
2 STFC Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, United Kingdom
3 University of Strathclyde, Glasgow G1 1XQ, United Kingdom
4 Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ, United Kingdom
5 Graduate School of Engineering, Osaka University, Japan
6 Queens University Belfast, Belfast BT7 1NN, United Kingdom
7 University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
8 University of Cambridge, Cambridge CB2 1TQ, United Kingdom
9 GoLP/Instituto de Plasmas e Fusao Nuclear - Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisbon, Portugal
The energy transfer by stimulated Brillouin backscatter from a long pump pulse (15 ps) to a short seed pulse (1 ps) has been investigated in a proof-of-principle demonstration experiment. The two pulses were both amplified in different beamlines of a Nd:glass laser system, had a central wavelength of 1054 nm and a spectral bandwidth of 2 nm, and crossed each other in an underdense plasma in a counter-propagating geometry, off-set by 10. It is shown that the energy transfer and the wavelength of the generated Brillouin peak depend on the plasma density, the intensity of the laser pulses, and the competition between two-plasmon decay and stimulated Raman scatter instabilities. The highest obtained energy transfer from pump to probe pulse is 2.5%, at a plasma density of 0:17ncr , and this energy transfer increases significantly with plasma density. Therefore, our results suggest that much higher efficiencies can be obtained when higher densities (above 0:25ncr ) are used.
laser–plasma interactions optical pulse generation and compression stimulated Brillouin and Raman scattering ultra-fast optical processes 
High Power Laser Science and Engineering
2014, 2(4): 04000e33
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
2 中国科技大学 近代物理系, 基础等离子体物理重点实验室, 合肥 230026
用无色散X射线谱仪分别在靶前后测量了飞秒激光辐照铜箔产生的Kα X射线,获得了能量转换效率。入射激光脉冲宽度33 fs,能量在50 mJ~5 J,强度1017~1019 W/cm2。靶后发射的Kα X射线强度随入射激光能量的增加而增加,其单色性较靶前好。采用100 μm厚靶,其能量转换率为2.2×10-5。
等离子体物理 激光-等离子体相互作用 飞秒激光 X射线发射 plasma physics laser-plasma interactions femtosecond laser X-ray emission conversion efficiency 
强激光与粒子束
2011, 23(3): 689
汤宇晖 1,2韩申生 1,2,*张长学 1,2吴衍青 1,2[ ... ]徐至展 1,2
作者单位
摘要
1 中国科学院上海光学精密机械研究所
2 强光光学开放研究实验室,上海,201800
对超短超强激光脉冲(45 fs,6×1017 W/cm2)与光致电离氦气形成的欠稠密等离子体相互作用中的二次谐波辐射进行了实验研究.测量了多种打靶强度的飞秒激光脉冲与不同气体密度氦气相互作用的二次谐波光谱,得到在欠稠密等离子体中二次谐波辐射与打靶激光能量的关系,分析了产生二次谐波辐射产生的物理机制,在考虑了强短脉冲激光电离气体产生的等离子体径向电子密度梯度因素,基于非线性作用过程的理论预期曲线与实验结果较好地吻合.
激光等离子体 谐波辐射 飞秒激光 
光学学报
2002, 22(7): 780

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!