陈伯伦 1,**杨正华 1,2李晋 1胡昕 1[ ... ]王峰 1,*
作者单位
摘要
1 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
2 四川大学原子与分子物理研究所, 四川 成都 610065

在基于大型激光装置的惯性约束聚变实验研究中,球面弯晶成像是一种能够实现准单能高分辨成像的测量技术。采用类点投影的高分辨背光排布设计,在万焦耳级神光系列激光装置中,球面弯晶成像系统被应用于流体力学不稳定性和内爆压缩流线等多种激光等离子体实验研究中。在球形样品烧蚀压缩过程界面轨迹测量应用中,球面弯晶成像具有大视场、准单色和背光分布自匀滑等优势。在不改变成像系统排布参数的条件下,通过对成像参数的设计优化,平衡了子午方向和弧矢方向分辨率对一维界面轨迹测量的影响。在使用具有更大尺寸的背光源条件下,实现了界面轨迹吸收图像空间分辨率的提高,并且有效提升了图像的信噪比。将优化的球面弯晶成像系统与替代靶设计相结合,实现了2.1%的内爆速度测量精度。

X射线光学 等离子体物理 激光等离子体 界面轨迹 球面弯晶 
光学学报
2022, 42(11): 1134012
Author Affiliations
Abstract
1 Blackett Laboratory, Imperial College London, London, UK
2 First Light Fusion Ltd, Yarnton, UK
3 LERMA, Sorbonne-Université, Observatoire de Paris, CNRS, France
4 ELI Beamlines Center, Institute of Physics, Czech Academy of Sciences, Dolni Brezany, Czech Republic
5 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
6 Instituto de Fusión Nuclear Guillermo Velarde, Universidad Politécnica de Madrid, Madrid, Spain
7 AWE plc., Aldermaston, Reading, UK
8 Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Chilton, Didcot, UK
9 University of Michigan, Ann Arbor, MI, USA
10 Current affiliation: Magdrive Ltd, Harwell, UK
We report on the design and first results from experiments looking at the formation of radiative shocks on the Shenguang-II (SG-II) laser at the Shanghai Institute of Optics and Fine Mechanics in China. Laser-heating of a two-layer CH/CH–Br foil drives a $\sim 40$ km/s shock inside a gas cell filled with argon at an initial pressure of 1 bar. The use of gas-cell targets with large (several millimetres) lateral and axial extent allows the shock to propagate freely without any wall interactions, and permits a large field of view to image single and colliding counter-propagating shocks with time-resolved, point-projection X-ray backlighting ($\sim 20$ μm source size, 4.3 keV photon energy). Single shocks were imaged up to 100 ns after the onset of the laser drive, allowing to probe the growth of spatial nonuniformities in the shock apex. These results are compared with experiments looking at counter-propagating shocks, showing a symmetric drive that leads to a collision and stagnation from $\sim 40$ ns onward. We present a preliminary comparison with numerical simulations with the radiation hydrodynamics code ARWEN, which provides expected plasma parameters for the design of future experiments in this facility.
high energy density physics laboratory astrophysics plasma physics high-power laser laser-driven shocks experiments X-ray backlighting X-ray radiography 
High Power Laser Science and Engineering
2021, 9(2): 02000e27
Author Affiliations
Abstract
1 Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG, UK
2 Department of Physics, West Virginia University, Morgantown, WV 26506-6315, USA
3 School of Mathematics and Statistics, University of St. Andrews, Fife, KY16 9SS, UK
4 Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
5 GoLP/Instituto de Plasmas e Fusãu Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
6 STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK
7 Laboratoire pour l’Utilisation de Lasers Intenses, UMR7605, CNRS CEA, Université Paris VI Ecole Polytechnique, 91128 Palaiseau Cedex, France
8 Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
9 Departments of Planetary Sciences and Astronomy, University of Arizona, Tucson, AZ 85721, USA
10 AWE, Aldermaston, Reading, West Berkshire, RG7 4PR, UK
11 Department of Physics, National Central University, Taoyuan 320, China
12 Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871, Japan
13 School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK
14 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
15 Imperial College London, London, SW72AZ, UK
This paper describes a model of electron energization and cyclotron-maser emission applicable to astrophysical magnetized collisionless shocks. It is motivated by the work of Begelman, Ergun and Rees [Astrophys. J. 625, 51 (2005)] who argued that the cyclotron-maser instability occurs in localized magnetized collisionless shocks such as those expected in blazar jets. We report on recent research carried out to investigate electron acceleration at collisionless shocks and maser radiation associated with the accelerated electrons. We describe how electrons accelerated by lower-hybrid waves at collisionless shocks generate cyclotron-maser radiation when the accelerated electrons move into regions of stronger magnetic fields. The electrons are accelerated along the magnetic field and magnetically compressed leading to the formation of an electron velocity distribution having a horseshoe shape due to conservation of the electron magnetic moment. Under certain conditions the horseshoe electron velocity distribution function is unstable to the cyclotron-maser instability [Bingham and Cairns, Phys. Plasmas 7, 3089 (2000); Melrose, Rev. Mod. Plasma Phys. 1, 5 (2017)].
laboratory astrophysics plasma physics particle acceleration plasma-wave instabilities 
High Power Laser Science and Engineering
2019, 7(1): 01000e17
Author Affiliations
Abstract
1 Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
2 Institute of Physics of the ASCR, Na Slovance 1999/2, 182 21 Prague, Czech Republic
The study of structure, thermodynamic state, equation of state (EOS) and transport properties of warm dense matter (WDM) has become one of the key aspects of laboratory astrophysics. This field has demonstrated its importance not only concerning the internal structure of planets, but also other astrophysical bodies such as brown dwarfs, crusts of old stars or white dwarf stars. There has been a rapid increase in interest and activity in this field over the last two decades owing to many technological advances including not only the commissioning of high energy optical laser systems, z-pinches and X-ray free electron lasers, but also short-pulse laser facilities capable of generation of novel particle and X-ray sources. Many new diagnostic methods have been developed recently to study WDM in its full complexity. Even ultrafast nonequilibrium dynamics has been accessed for the first time thanks to subpicosecond laser pulses achieved at new facilities. Recent years saw a number of major discoveries with direct implications to astrophysics such as the formation of diamond at pressures relevant to interiors of frozen giant planets like Neptune, metallic hydrogen under conditions such as those found inside Jupiter’s dynamo or formation of lonsdaleite crystals under extreme pressures during asteroid impacts on celestial bodies. This paper provides a broad review of the most recent experimental work carried out in this field with a special focus on the methods used. All typical schemes used to produce WDM are discussed in detail. Most of the diagnostic techniques recently established to probe WDM are also described. This paper also provides an overview of the most prominent examples of these methods used in experiments. Even though the main emphasis of the publication is experimental work focused on laboratory astrophysics primarily at laser facilities, a brief outline of other methods such as dynamic compression with z-pinches and static compression using diamond anvil cells (DAC) is also included. Some relevant theoretical and computational efforts related to WDM and astrophysics are mentioned in this review.
high pressure phases laboratory astrophysics lasers planetary interiors plasma physics warm dense matter 
High Power Laser Science and Engineering
2018, 6(4): 04000e59
Th. Michel 1,2,*E. Falize 3,4B. Albertazzi 1,2G. Rigon 1,2[ ... ]M. Koenig 1,2,10
Author Affiliations
Abstract
1 LULI - CNRS, école Polytechnique, CEA : Université Paris-Saclay
2 UPMC Univ Paris 06 : Sorbonne Universités - F-91128 Palaiseau Cedex, France
3 CEA, DAM, DIF, F-91297 Arpajon, France
4 CEA Saclay, DSM/Irfu/Service d’Astrophysique, F-91191 Gif-sur-Yvette, France
5 Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871, Japan
6 Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka 816-8580, Japan
7 LUTH, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 92190 Meudon, France
8 Université de Bordeaux-CNRS-CEA, CELIA, UMR 5107, F-33405 Talence, France
9 GEPI, Observatoire de Paris, PSL Research University, CNRS, Université Paris Diderot, Sorbonne Paris Cité, 75014 Paris, France
10 Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
11 0LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, F-75005 Paris, France
12 1Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, UK
13 2Flash Center for Computational Science, University of Chicago, IL 60637, USA
In this paper, we present a model characterizing the interaction of a radiative shock (RS) with a solid material, as described in a recent paper (Koenig et al., Phys. Plasmas, 24, 082707 (2017)), the new model is then related to recent experiments performed on the GEKKO XII laser facility. The RS generated in a xenon gas cell propagates towards a solid obstacle that is ablated by radiation coming from the shock front and the radiative precursor, mimicking processes occurring in astrophysical phenomena. The model presented here calculates the dynamics of the obstacle expansion, which depends on several parameters, notably the geometry and the temperature of the shock. All parameters required for the model have been obtained from experiments. Good agreement between experimental data and the model is found when spherical geometry is taken into account. As a consequence, this model is a useful and easy tool to infer parameters from experimental data (such as the shock temperature), and also to design future experiments.
high energy density physics laser–plasmas interaction modelling plasmas astrophysics plasma physics radiative hydrodynamics radiative shock. 
High Power Laser Science and Engineering
2018, 6(2): 02000e30
Sav Chima 
Author Affiliations
Abstract
Target Fabrication Group, AWE plc, Aldermaston, Reading, Berks, RG7 4PR, England
Laser target components consist of multicomponent porous and nonporous materials that are adhesively bonded together. In order to assess the extent and quantity of adhesive wicking into porous foam, micro X-ray computed tomography (CT) and image processing software have been utilized. Two different laser target configurations have been assessed in situ and volume rendered images of the distribution and quantities of adhesive have been determined for each.
adhesive wicking carbon aerogel critical point drying image processing phase contrast plasma physics experiments porous foam volume rendering X-ray CT 
High Power Laser Science and Engineering
2017, 5(4): 04000e28
作者单位
摘要
国防科学技术大学理学院, 湖南 长沙 410073
利用激光与等离子体相互作用产生超强太赫兹辐射的研究成为国内外研究的热点。基于Smith 提出的线形天线辐射理论,对超强超短激光脉冲驱动天线靶产生太赫兹的辐射特性进行研究,建立了完备的辐射空间分布和频谱空间分布表达式。利用激光脉冲长度与天线长度的比值对辐射场分布的影响,讨论了固定天线长度时的最佳激光脉冲长度,以及固定激光条件时,天线长度对辐射场的频谱和空间分布的调制作用。理论分析结果表明,激光脉冲长度决定了辐射频率范围,激光脉冲长度与天线长度的比值决定了辐射场峰值的方向和频谱分布,为设计合理实验方案提供理论依据。
激光技术 等离子体物理 天线 太赫兹辐射 超强激光 频谱 
光学学报
2015, 35(3): 0314003
作者单位
摘要
中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
采用蒙特卡罗方法计算了低温下C,Si,Ar,Au和U等多种重粒子在等物质的量氘氚等离子体密度1000 g/cm3、热斑直径50 μm中的电子能量损失,不同点火形式下入射能量和作用时间,以及燃料约束时间为20 ps条件下的束流强度。通过对数据的分析研究了这些重粒子辐照实现氘、氚燃料快点火的可能性。结果表明,重粒子束流加热等离子体实现快点火理论上可行,而且有一定的优势;较重的离子加热聚变等离子体的效果更好。重粒子束流加热等离子体到聚变温度需要的束流强度在MA左右;单个粒子的能量在GeV以上;相互作用时间为ps以下。
等离子体物理学 相互作用 蒙特卡罗计算 氘氚 加热 plasma physics interaction Monte Carlo DT heating 
强激光与粒子束
2013, 25(1): 67
作者单位
摘要
1 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
2 中国科技大学 近代物理系, 基础等离子体物理重点实验室, 合肥 230026
用无色散X射线谱仪分别在靶前后测量了飞秒激光辐照铜箔产生的Kα X射线,获得了能量转换效率。入射激光脉冲宽度33 fs,能量在50 mJ~5 J,强度1017~1019 W/cm2。靶后发射的Kα X射线强度随入射激光能量的增加而增加,其单色性较靶前好。采用100 μm厚靶,其能量转换率为2.2×10-5。
等离子体物理 激光-等离子体相互作用 飞秒激光 X射线发射 plasma physics laser-plasma interactions femtosecond laser X-ray emission conversion efficiency 
强激光与粒子束
2011, 23(3): 689
作者单位
摘要
华南理工大学 电力学院,广东 广州 510640
将激光诱导击穿光谱技术应用于钢铁检测,研究了不同金相组织对激光诱导钢铁等离子体特性的影响。选用45#钢,通过热处理,分别得到珠光体+铁素体、贝氏体和马氏体3种不同金相组织的钢铁样品。分析了不同激光脉冲能量下,3种不同金相组织的等离子体温度、电子密度和元素特征谱线强度的变化规律。实验结果表明,不同金相组织钢铁的等离子体温度、电子密度和元素特征谱线强度随脉冲能量的变化趋势基本一致。相同实验条件下,珠光体+铁素体组织的等离子体温度、电子密度和元素谱线强度均较大,贝氏体组织次之,马氏体组织最小。
激光技术 等离子体物理学 激光诱导击穿光谱 金相组织 谱线强度 等离子体温度 电子密度 
中国激光
2010, 37(8): 2126

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!