作者单位
摘要
中国电子科技集团公司 第二十六研究所,重庆 400060
研究了常规光刻工艺下单晶薄膜晶圆制备声表面波滤波器的频率分散特性。结果表明,压电单晶薄膜的表面色差是引起频率分散性恶化的根本原因,采用抗反射膜工艺抑制衬底反射以及分区曝光工艺对不同色块进行曝光补偿,均能有效地提高片内频率一致性,频率2 MHz内包含最大器件数量占比,从常规曝光的48.81%提高到抗反射膜工艺的53.57%和分区曝光工艺的70.24%。
压电单晶薄膜衬底 反射膜 曝光补偿 频率一致性 piezoelectric-on-insulator wafer antireflective film exposure compensation frequency consistency 
压电与声光
2023, 45(6): 800
刘涛 1,*朱华新 1,2曹建军 1,2胡立发 1,2[ ... ]陈晓家 1
作者单位
摘要
1 江南大学 理学院, 江苏 无锡 214122
2 江苏省轻工光电工程技术研究中心, 江苏 无锡 214122
为研究金属Al保护、单周期及双周期增强反射膜在5ns脉宽的532nm激光器下的激光损伤阈值(LIDT),采用Comsol软件进行仿真及分析,仿真过程引入SiO2和Ta2O5的拉伸强度(膜层断裂应力)作为阈值条件,得到三种膜系的损伤阈值分别为0.318J/cm2、1.325J/cm2和3.382J/cm2,通过搭建实验平台进行激光阈值测试,采用1-on-1模式,选取50%概率的激光损伤点作为损伤阈值,测得激光功率分别为0.288J/cm2、1.232J/cm2及3.152J/cm2,与仿真结果较为接近,说明采用拉伸强度分析的该类模型更符合实际损伤,为此类膜系在实际应用中阈值的预测提供了理论基础。
反射膜 激光损伤 拉伸强度 reflective films laser induction damage tensile strength 
光学技术
2023, 49(2): 168
作者单位
摘要
东华大学检测实验室, 先进玻璃制造技术教育部工程研究中心, 上海 201620
根据GB/T 39552.2-2020 《太阳镜和太阳镜片 第2部分: 试验方法》中6.8条款, 利用不同的测试方法和波长间隔, 对市场上同一种类减反射膜层的太阳镜片样品进行减反射项目的测试, 并对测试结果进行分析。测试结果表明: 测试太阳镜片的双面减反射项目, 分光光度计和光纤光谱仪可以等效替代; 测试太阳镜片的单面减反射项目, 如使用分光光度计, 镜片的外表面需要先做消光(涂黑)处理, 再进行测试, 如使用光纤光谱仪, 则可以直接对镜片进行测试。
太阳镜片 反射膜 测试 sunglare filters anti-reflective coatings testing 
玻璃搪瓷与眼镜
2023, 51(1): 29
作者单位
摘要
1 杭州电子科技大学 电子信息学院, 浙江 杭州 310018
2 天津可宏振星科技有限公司, 天津 300192
离轴三反光学系统由于具有工作波段宽,像质优良且杂散光易于控制等优势,因而被广泛用作光谱成像系统的设计方案。文中采用Code V软件,对光学系统进行了设计,基于光的偏振理论,推导出薄膜样品和系统的偏振保真度与相位差之间的换算关系,选择铝材料作为基底材料,银(Ag)、三氧化二铝(Al2O3)和二氧化钛(TiO2)为镀膜材料。根据光学薄膜基础理论,设计出光线38.5°入射,在1 545~1 555 nm处RS>99.96%,RP>99.8%,P光和S光相位延迟小于1°的反射膜。结合膜系设计软件进行膜系设计和模拟分析,在德国莱宝光学公司设计生产的高性能光学镀膜机上完成了离轴三反光学系统中铝合金表面反射膜的制备。采用Lamda1050光谱仪对镀膜样品的S光、P光反射光谱和相位进行测试,测试结果满足设计要求。该研究具有重要的实际意义和工程价值。
光谱相机 离轴三反 光学设计 反射膜 spectral camera off-axis three-mirror optical design reflective coating 
红外与激光工程
2022, 51(9): 20210900
作者单位
摘要
武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
红外高反射薄膜是实现超低损耗光学器件、红外隐身等技术的关键基础材料。根据多层光学薄膜的传输矩阵原理,得到一维光子晶体的反射率和透射率表达式,分析推导了一维光子晶体的能带结构。利用传输矩阵原理,以Ge和SiO2为介质材料设计了28层λ/4一维光子晶体结构。随后,利用有限元法计算其光子能带,使用折射率差值更大的PbSe和SiO2,计算出光子晶体的第一、第二禁带分别为2.01×1013 ~ 4.11×1013Hz和8.13×1013~1.02×1014Hz。优化后的λ/4一维光子晶体结构层数低至14层,实现了3~5 μm和8~14 μm的高反射率。
计算仿真 红外高反射膜结构 能带曲线 光子晶体 computational simulation infrared high reflective film structure energy band curve photonic crystal 
硅酸盐学报
2022, 50(5): 1310
作者单位
摘要
1 长春理工大学光电工程学院,吉林 长春 130022
2 光驰科技(上海)有限公司,上海 200444
为了提高电子产品显示屏幕的耐用性,研制了可见光波段的硬质减反射薄膜。使用新材料SiAlON代替常用低折射率材料SiO2,依据Clausius-Mossotti方程式对其等效介电常数进行了理论计算,并进行了实验验证。经测试,基于SiAlON与Si3N4制备的硬质减反射薄膜的平均硬度达到1773.9 HV,可见光波段的平均反射率为0.489%。所提方法在保证薄膜减反射效果的同时提升了薄膜硬度,所研制的薄膜对电子产品的显示屏起到了更好的保护作用。研究结果对在低反射和高硬度方面具有较高要求的光学组件具有重要意义。
薄膜 光学薄膜 反射膜 SiAlON 硬度 
中国激光
2022, 49(6): 0603002
作者单位
摘要
1 中国电子科技集团公司第二十六研究所,重庆 400060
2 中国电子科技集团公司第四十四研究所, 重庆 400060
单晶薄膜声表面波(SAW)滤波器因其低损耗, 低频率温度系数及大带宽而成为高性能SAW滤波器未来发展的方向。针对单晶薄膜衬底反射带来的换能器指条锯齿和均匀性恶化的问题, 该文采用了有机抗反射膜工艺, 通过控制抗反射膜的膜厚将衬底的相对反射率由15.84%降低至1.08%, 制作出整齐无毛刺的叉指换能器指条, 并将SAW谐振器的伯德Q(Bode-Q)值由1 400提升到1 950。
压电单晶薄膜衬底 反射膜 光刻 伯德Q值 piezoelectric single crystal thin film substrate antireflective film lithography Bode-Q 
压电与声光
2021, 43(4): 583
作者单位
摘要
长春理工大学光电工程学院, 吉林 长春130022
基于亚波长结构对光场的调控作用,研制了单层金属线栅偏振元件。利用等效介质和严格耦合波分析(RCWA)理论确定了结构参数,使用有限时域差分(FDTD)法优化设计了Si基底Al金属线栅结构,并通过多层减反射膜与金属线栅结构的匹配,降低了基底剩余反射率,提高了横磁(TM)波透过率。采用间歇镀Al法减少了辐射温度导致的胶栅形变,制备了具有高偏振性能的亚波长元件。经测试,所制备的线栅偏振元件在中波红外3~5 μm波段的TM波透过率为89.1%,消光比为21.9 dB。
薄膜 反射膜 金属Al 间歇镀膜 亚波长 高偏振性能 
中国激光
2021, 48(9): 0903002
作者单位
摘要
华中科技大学 武汉光电国家研究中心,  湖北 武汉 430074
利用有限时域差分方法设计并优化了由二氧化硅和氮化硅组成的双层和三层减反射膜, 在1550nm波长附近实现减反射效果。采用等离子增强化学气相沉积高质量的二氧化硅和氮化硅薄膜, 制备了氧化硅、氮化硅双层减反射膜, 同时制备了氮化硅、氧化硅、氮化硅三层减反射膜。测量了两种减反射膜的减反射效果, 双层减反射膜的反射率可以达到0.18%以下, 三层减反射膜比双层减反射膜具有更大的带宽。
薄膜光学 反射膜 有限时域差分 等离子增强化学气相沉积 film optics antireflective coatings FDTD PECVD 
光学技术
2021, 47(1): 28
作者单位
摘要
青岛大学电子信息学院, 山东 青岛 266071
具有宽带高吸收特性的吸收器是太阳能利用的关键。设计了一种含有抗反射层的基于二维光子晶体结构的太阳能吸收器,其中砷化镓(GaAs)作为吸收介质,被填充到具有四方晶格结构的二维光子晶体的钨(W)基底圆形空腔中。采用有限元法进行了模拟计算分析,结果表明,在300~2500 nm的波长范围内,吸收器的平均吸收率为92.5%,有效吸收率高达94.9%,入射仰角为50°时,有效吸收率仍有90.13%。该结构具有全太阳光谱高吸收、偏振不敏感和广角吸收等特点。研究结果为高性能太阳能吸收器的设计提供了参考。
材料 太阳能吸收器 二维光子晶体 反射膜 吸收谱 全太阳光谱 
光学学报
2021, 41(5): 0516002

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!