作者单位
摘要
大连理工大学光电工程与仪器科学学院,辽宁 大连 116024
大气激光雷达已广泛应用于大气污染源水平扫描测量,而水平扫描测量激光雷达信号的消光系数边界值求解及廓线反演是其定量化应用的关键。针对这一问题,提出了一种基于改进的道格拉斯-普克(DP)算法确定消光系数边界值的新方法,并结合经典Klett方法实现水平扫描测量时的大气消光系数稳健反演。系统性地研究了经典DP算法在消光系数边界值求解时的性能及潜在的问题。在此基础上,提出将对数激光雷达信号与对应直线线段的偏离方差作为阈值控制手段,以替代经典DP算法中的最远距离阈值,从而更加准确地获取对数激光雷达曲线的线性区间,进而利用斜率法求解消光系数边界值。通过消光系数反演结果的对比分析,验证了改进DP算法的有效性。利用该方法反演的消光系数与周围空气污染监测站的PM10颗粒物浓度具有较高的相关性(>0.88)。研究结果表明,提出的改进DP算法可为水平扫描激光雷达信号的消光系数边界值求解和廓线反演提供有效的方法。
大气光学 沙氏激光雷达 道格拉斯-普克算法 边界值 消光系数 大气污染 
中国激光
2023, 50(14): 1410002
作者单位
摘要
北京科技大学 数理学院,北京 100083
基于光在长光程吸收池中的传输特性,设计了一套新型的大气污染颗粒物消光模拟测量系统。该系统由消光测量装置和大气污染颗粒物模拟装置构成。消光测量装置主要由激光器、开放式Herriot长光程吸收池和光功率计构成。在消光测量装置中,开放式Herriot长光程吸收池将某一波长的光经固定角度的镜片多次反射达到增大光程的目的;同时有利于对其内部反射镜表面的清洁,提高消光测量的灵敏度;还能够实时检测用于消光的颗粒物浓度。消光系数通过吸收池入口和出口处监测到的光功率计算获得,光功率的测量中利用差分法降低了激光器本身能量波动带来的误差,提高消光系数测量的准确性。通过与真实大气雾霾情况下激光雷达测量到的消光系数进行对比,验证了所搭建消光模拟测量系统的合理性。
大气光学 大气污染颗粒物 Herriot长光程吸收池 消光系数 折射率 Atmosphere optics Atmosphere pollution particulate matter Herriot long-path absorption cell Extinction coefficient Refractive index 
光子学报
2023, 52(3): 0352118
作者单位
摘要
1 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
2 污染物敏感材料与环境修复安徽省重点实验室, 安徽 淮北 235000
我国城市气体污染物主要包括氮氧化物、 臭氧、 二氧化硫和颗粒物等, 其中NO2和SO2是气体污染物中常见的污染痕量气体, 对地气辐射、 全球气候、 空气质量和人体健康都有着直接或间接的影响。 淮北地区是我国基础能源和重要原料煤炭的生产基地, 长期的煤炭生产使得当地大气环境污染相对更为复杂, 开展快速获取大气污染物浓度是目前研究热点之一。 差分吸收光谱(DOAS)仪是一种光学遥感式光谱设备, 具有稳定、 时间分辨率高、 灵敏度高和不受搭建平台制约等优势特点, 可同时获取多种污染气体的浓度信息。 针对淮北地区复杂的环境污染, 构建了基于移动平台的车载小型差分吸收光谱系统(DOAS), 该系统包括光谱采集系统、 温控系统和GPS定位系统。 利用车载GPS定位系统记录移动过程中的经纬度和车速, 光谱仪放置在恒温系统中, 保障系统测量的精准性。 在实验期间, 首先测试了系统的性能, 规划了走航观测路线, 并将车载DOAS测量结果与地基MAX-DOAS进行对比以验证系统的准确性, 实现了对淮北地区的大气典型污染物的快速、 便捷、 精准监测。 航测期间, 利用QDOAS软件对原始测量光谱进行反演处理, 选取相对干净的光谱作为参考谱, 获取了淮北地区NO2和SO2柱浓度空间分布, 其中NO2的浓度范围为5.09×1015~15.4×1016 molecule·cm-2, SO2的浓度范围为3.53×1015~9.07×1016 molecule·cm-2。 将车载DOAS测量的结果分别与站点地基MAX-DOAS测量结果和卫星(TROPOMI)数据对比, 均具有较好一致性(相关系数R2>0.75)。 外场实验表明构建的车载小型DOAS系统可以准确的获取城市污染气体柱浓度分布, 为确认城市污染气体的源区和校验卫星遥感数据提供一种有效的技术手段。
车载 小型差分吸收系统 淮北地区 柱浓度 大气污染 Vehicle-mounted Minioptical differential absorption spectroscopic Huaibei region Column concentration Atmospheric pollution 
光谱学与光谱分析
2023, 43(3): 984
作者单位
摘要
1 山东省济宁市生态环境局, 山东 济宁 272004
2 山东省生态环境监测中心, 山东 济南 250013
3 呼和浩特市生态环境监控中心, 内蒙古 呼和浩特 010010
4 合肥中科光博量子科技有限公司, 安徽 合肥 230088
5 中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室, 北京 100029
6 解放军陆军炮兵防空兵学院基础部, 安徽 合肥 230031
大气气溶胶通过直接效应影响到达地表的辐射量以及间接效应影响云的生消和降水等过程, 还因其含有的各种有毒物质颗粒, 影响城市能见度, 导致霾过程频发, 而这些颗粒进入人体会对人体健康造成一定危害。 利用济宁市2018年—2019年期间多台气溶胶激光雷达的垂直观测廓线数据与区域空气质量监测数据, 分析了不同大气污染过程中的颗粒物时空演变特征。 结果显示, 济宁市夏季的细粒子污染存在一定的区域差异性, 主要呈现两种日变化特征。 一种是部分区域在夜间消光强, 白天消光弱, 主要是因为夜间受到湿度偏大与污染源排放叠加的影响; 另一种是部分区域白天消光相对较强且整体无明显日变化特征, 原因在于周围污染源较少且受人工湖的影响。 此外, 近地面气溶胶消光系数变化显示辰欣制药站与金马酒店站附近颗粒物浓度相对更高。 沙尘观测结果显示, 济宁市的沙尘天气多出现于4月和5月, 沉降过程中颗粒物浓度可高达平时浓度的5倍。 同时对比扫描观测结果显示, 局地污染的轮廓无规则、 范围小、 突发且消光很强, 而大范围污染过程则轮廓面积大且其消光逐渐增大。
激光雷达 气溶胶 沙尘 大气污染 变化特征 Lidar Aerosol Dust Air pollution Variation characteristics 
光谱学与光谱分析
2022, 42(11): 3467
作者单位
摘要
中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院通用光学定标与表征重点实验室, 安徽 合肥 230031
基于被动傅里叶变换红外光谱仪设计开发了一种新的快速气体识别算法, 利用改进的动量梯度下降法对实测的亮温光谱进行快速的光谱拟合。该方法不需要预先测得背景光谱, 能直接从实测光谱中扣除大气气体和天空等背景的干扰, 在提取出污染气体成分以及浓度的同时, 能实时得到大气中主要气体的浓度程长积, 此方法适用于低空背景下弱信号的污染气体识别分析。
红外光谱仪 遥感探测 大气污染 气体识别 infrared spectrometer remote sensing detection atmospheric pollution gas recognition 
大气与环境光学学报
2022, 17(5): 542
作者单位
摘要
1 芜湖职业技术学院, 安徽 芜湖 241006
2 芜湖市生态环境局, 安徽 芜湖 241006
3 南通大学地理科学学院, 江苏 南通 226007
2020 年春节期间 (1 月 24 日-2 月 8 日), 受新冠肺炎疫情影响, 芜湖市居民活动水平降到最低, 但芜湖市却出现了三次不同程度的空气污染过程, 为探索芜湖市大气污染成因提供了契机。利用地面气象要素监测数据、激光雷达监测数据以及 HYSPLIT 后向轨迹模型分析了这三次污染过程的污染特征和成因。结果表明: 1 月 27 日 08:00-28 日 18:00 第一次污染过程, 是在本地基础排放量不变的情况下, 高湿静稳的大气环境诱发的 10 小时短暂性污染过程; 1 月 29 日 17:00-2 月 1 日 13:00 第二次污染过程, 是在重点企业排放量增加、大气扩散条件较不利的情况下, 受源自河北、河南、山东等地的污染气团远距离长时间的污染输送, 加剧污染程度, 最终形成 1 月 30-31 日 2 天的轻度污染; 2 月 2 日 19:00-4 日 07:00 第三次污染过程, 则是在不利的扩散条件下, 受源自江苏、浙江一带污染气团短时间输入性影响, 形成 2 月 3 日 1 天的轻度污染; 与 2019 年春节期间相比, 2020 年空气质量改善明显, 中度及以上污染天数减少了 100%, 轻度污染以上的污染时长减少 48 小时。 可见, 本地源减排是改善芜湖环境空气质量的根本, 区域性联防联控是应对污染天气的有效手段。
大气污染过程 芜湖 后向轨迹模型 气溶胶激光雷达 air pollution event Wuhu back trajectory model aerosol lidar 
大气与环境光学学报
2021, 16(2): 127
作者单位
摘要
1 上海勘测设计研究院有限公司, 上海 200335
2 复旦大学环境科学与工程系, 上海 200433
3 珠海复旦创新研究院, 广东 珠海 519000
利用长程差分光学吸收光谱技术对黄浦江下游典型航道区域船舶排放的空气污染物进行高时间分辨率监测。研究表明 SO2 浓度受船舶尾气烟羽影响显著, 浓度瞬时可增高 2~4 倍不等, 峰值超过 10×10-9 (体积混合比); 而由于来源情况更为复杂, NO2 浓度的变化较为平缓, 且由于受到周围机动车排放影响, 日变化呈现出明显的双峰特征。受船流量影响, SO2 浓度在日间相对较高。人为活动影响分析表明, NO2 浓度在春节假期相较于前后时段下降 30%以上, 而在新冠疫情重大突发公共卫生事件一级响应启动后下降达 50%。 值得注意的是, 由于船舶活动规律的差异性, SO2 浓度的假期效应以及对疫情响应措施的反应并不明显, 但 SO2 浓度的典型排放高值呈现逐年下降的趋势。
船舶 大气污染 ship air pollution DOAS DOAS SO2 SO2 NO2 NO2 
大气与环境光学学报
2021, 16(2): 98
作者单位
摘要
1 河南工业大学信息科学与工程学院, 河南 郑州 450001
2 中国科学院合肥物质科学研究院安徽光学精密机械研究所, 中国科学院大气光学重点实验室, 安徽 合肥 230031
针对北京地区 2018 年 3 月 29 日-4 月 10 日的一次完整重污染过程, 利用空气质量监测数据及 AERONET 北京站观测数据开展其污染特征及光学特性分析, 并结合 HYSPLIT 气流后向轨迹模式, 对此次重污染期间大气颗粒物时空传输特征进行了综合研究。结果表明: 北京地区此次重污染过程以弱吸收性细模态气溶胶为主; 重污染期间 PM2.5 浓度和气溶胶光学特性受天气影响非常明显; AEORNET 得到的气溶胶光学特性结果与地面空气监测站监测数据吻合良好, 表明 AERONET 能在重污染过程气溶胶光学特性研究中发挥重要作用。
大气污染 气溶胶 光学特性 污染特征 air pollution aerosol optical characteristics pollution characteristics 
大气与环境光学学报
2021, 16(1): 28
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学科学岛分院, 安徽 合肥 230026
3 中国科学院区域大气环境研究卓越创新中心, 中国科学院城市环境研究所, 福建 厦门 361021
甲醛(HCHO)是大气中含量最为丰富的羰基化合物, 是非甲烷可挥发性有机化合物(NMVOCs)的最重要的中间产物之一, 广泛参与大气中的光化学反应, 同时也是气溶胶的重要前体物, 在大气化学中承担了非常重要的作用。 石油化工行业的VOCs类排放是城市大气中HCHO的重要来源, 而目前化工园区中的HCHO等NMVOCs类污染物主要通过点式设备获取近地面浓度, 缺乏立体监测数据。 差分光学吸收光谱(DOAS)技术已成功应用于SO2和NO2等污染气体监测, 甲醛由于其光学吸收强度相对较弱, 反演波段内其他气体交叉干扰强, 实际的监测应用相对较少。 选取某石化企业, 运用被动DOAS方法实现了甲醛柱浓度的精确反演。 研究通过建立甲醛吸收截面与其他参与拟合气体吸收截面的二维相关性矩阵, 选取甲醛吸收截面同其他气体吸收截面相关性最小的波段, 即实现其他气体对甲醛的DOAS反演交叉干扰最小的波段的获取。 同时选取外场实际采集的光谱, 选择不同起始波段和截止波段做迭代DOAS反演, 通过拟合残差来评估甲醛在不同波段的实际反演效果。 在截面间交叉干扰小, 拟合残差低的波段范围内, 选择尽量宽的波段作为最佳的拟合波段, 实现甲醛的精确DOAS反演。 由甲醛同其他气体吸收截面的二维相关性矩阵结果, 甲醛与NO2, SO2和O3和O4间在大部分波段内相关性均在0.5以下, 交叉干扰小; 甲醛同BrO在起始波长318~320 nm, 截止波长340~346 nm以及起始波长330~334 nm, 截止波长354~360 nm两个波段范围内截面间相关性小于0.5, 适合作为HCHO的反演波段。 通过选择不同起始波段和截止波段做甲醛的迭代DOAS反演, 结合拟合截面相关性分析结果综合考虑, 最终采用332.4~358.1 nm作为HCHO的反演波段, 拟合残差在10-4量级。 利用车载被动DOAS系统, 通过建立吸收截面间二维相关性矩阵并通过实测光谱的迭代反演, 获取了适用于该套系统的HCHO最佳拟合波段, 拟合残差降低至10-4量级, 在实现甲醛精确反演的基础上, 结合系统GPS信息, 获取了某化工企业甲醛柱浓度的空间分布, 整个外场观测期间, HCHO的反演误差低于6%。 结果表明, 车载被动DOAS系统在快速获取化工园区甲醛空间分布信息上可以发挥重要作用, 为城市大气中甲醛的立体监测提供了一种有效测量手段。
大气污染 化工园区 拟合波段 Air pollution Chemical industry park DOAS DOAS Fitting band HCHO HCHO 
光谱学与光谱分析
2019, 39(10): 3028
胡肇焜 1,2,*李昂 1谢品华 1,2,3吴丰成 1[ ... ]黄业园 1,2
作者单位
摘要
1 中国科学院安徽光学精密机械研究所, 中国科学院环境光学与技术重点实验室, 安徽 合肥 230031
2 中国科学技术大学科学岛分院, 安徽 合肥 230026
3 中国科学院区域大气环境研究卓越创新中心, 中国科学院城市环境研究所, 福建 厦门 361021
大气污染的综合防治需要从不同尺度的区域出发, 充分研究区域的环境特点, 需要对空气质量有作用的多种因素进行全面系统的分析, 获取大气污染物浓度时空分布是了解区域污染特征的重要途径。 获取高空间分辨的大气污染物柱浓度分布情况是掌握区域污染程度的重要前提。 由大气扩散模型, 排放源周边的大气污染物的柱浓度服从高斯分布。 将车载被动差分光学吸收光谱(DOAS)获取的对流层污染气体垂直柱浓度空间分布信息结合序贯高斯模拟方法重构了高空间分辨率的区域污染物柱浓度分布及其误差分布。 分别选取工业园区(钢铁企业)、 城市区域(北京市怀柔城区、 北京市通州城区)等典型区块进行走航观测, 获取观测路径上的NO2和HCHO柱浓度, 结合地理信息网格化车载观测数据, 利用序贯高斯模拟获取了观测区域的NO2和HCHO柱浓度分布以及污染物柱浓度误差分布, 重点分析了该方法在排放特征不同的区域柱浓度分布模拟重构的可行性及重构结果的不确定性。 某钢铁企业、 怀柔城区、 通州城区内污染源依次减少, 气态污染物分布的结构复杂性依次降低。 由半方差分析结果, 某钢铁企业由于NO2排放源多, 污染物柱浓度空间依赖性略弱, 城市区域污染物柱浓度表现出强烈的空间相关性, 并且整体呈现出了区域污染源越复杂, 空间相关性的范围越小的特点。 基于立体监测数据获取了观测区域百米空间分辨的污染物垂直柱浓度分布及误差分布, 在不依赖下垫面数据、 源清单数据或人口分布数据的基础上基于实测数据低成本地获取了重点工业区或城市区域气态污染物的分布细节, 同已有的卫星遥感等方法获取污染气体垂直柱浓度分布相比, 空间分辨率提高了2~3个数量级, 同时通过柱浓度误差分布定量评估了模拟重构的准确性。 针对不同排放特征的重点区域大气污染状况, 提供了新的准确性可评价的实测手段, 该方法对了解区域污染状况、 污染控制对策及控制效果的评估具有重要作用。
大气污染 大气光学 差分吸收光谱 序贯高斯模拟 Air pollution Atmospheric optics Differential optical absorption spectroscopy Sequential Gaussian Simulation 
光谱学与光谱分析
2019, 39(9): 2670

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!