作者单位
摘要
1 华中农业大学工学院, 湖北 武汉 430070
3 华中农业大学动物遗传育种与繁殖教育部实验室, 湖北 武汉 430070
4 宁夏回族自治区畜牧工作站, 宁夏 银川 750002
5 宁夏回族自治区兽药饲料监察所, 宁夏 银川 750011
为了找到一种能够对牛乳中的两种主要过敏原(αs1和κ-酪蛋白)含量快速检测的方法, 以河南、 湖北、 宁夏和内蒙古四省区的211份中国荷斯坦牛牛乳样本为研究对象, 建立了基于傅里叶变换中红外光谱技术的牛乳中αs1和κ-酪蛋白含量的无损快速检测模型。 首先对牛乳的原始光谱进行预分析, 发现水对牛乳的光谱吸收具有很强的干扰, 对水的两个主要吸收区域1 597~1 712和3 024~3 680 cm-1进行分析, 发现水的吸收区域1 597~1 712 cm-1和蛋白的部分吸收区域1 558~1 705 cm-1(酰胺Ⅰ)基本重合, 通过对比去除1 597~1 712 cm-1前后的效果, 最终选择925.92~3 005.382 cm-1的光谱区域作为敏感波段用于后续分析。 选取的全光谱经手动降维, 利用MCCV剔除异常样本, 分别采用标准正态变量变换(SNV)、 多元散射校正(MSC)等8种预处理算法和竞争性自适应重加权算法(CARS)、 无信息变量消除法(UVE)等3种特征选择算法联合建立支持向量机回归模型(SVR)。 经检验, 对于αs1-酪蛋白, 一阶导数和CARS算法结合建立的SVR模型效果最优, 训练集相关系数Rc和测试集相关系数Rp分别为0.882 7和0.899 8, 训练集均方根误差RMSEC和测试集均方根误差RMSEP分别为1.136 3和1.372 6; 对于κ-酪蛋白, 一阶差分和UVE算法结合建立的SVR模型效果最优, 训练集相关系数Rc和测试集相关系数Rp分别为0.880 8和0.890 3, 训练集均方根误差RMSEC和测试集均方根误差RMSEP分别为0.534 5和0.535 4。 研究结果表明, 基于傅里叶变换中红外光谱技术建立的SVR模型可以对牛乳中的过敏原αs1和κ-酪蛋白含量进行无损检测, 预测效果良好, 此研究弥补了国内利用光谱技术对牛乳中的酪蛋白进行无损快速检测的空白。
中红外光谱 牛乳 αs1-酪蛋白 κ-酪蛋白 无损检测 Medium infrared spectrum Cow’s milk αs1-casein κ-casein Nondestructive testing 
光谱学与光谱分析
2021, 41(12): 3688
作者单位
摘要
1 乳品科学教育部重点实验室(东北农业大学), 黑龙江 哈尔滨 150030
2 东北农业大学医院, 黑龙江 哈尔滨 150030
羊乳β-酪蛋白比牛乳β-酪蛋白更容易被婴幼儿消化吸收, 主要原因是二者结构的不同。 目前对牛乳β-酪蛋白结构的研究较多, 但对羊乳β-酪蛋白的结构以及羊乳和牛乳β-酪蛋白结构差异的研究还鲜有报道。 蛋白质二级结构的信息可由光谱获得, 其中圆二色光谱是利用蛋白质分子中具有光学活性的生色基团对左、 右平面圆偏振光吸收不同, 对蛋白质结构进行表征的方法, 可以测定溶液状态下的蛋白质样品, 使蛋白质构象更接近其生理状态, 而且具有快速简便, 对构象变化灵敏等优点; 红外光谱则是利用蛋白质分子在振动过程中不同化学键或官能团对红外光吸收频率不同, 对蛋白质结构进行表征的方法, 可以测定固体状态下的蛋白质样品, 具有扫描速度快、 分辨率高、 可测波长范围广、 不易受蛋白质样品的分子大小和外界条件影响等优点。 圆二色光谱和红外光谱已被广泛应用于蛋白质构象的研究中, 但是结合使用这两种方法分析β-酪蛋白结构的研究还鲜有报道。 因此, 该研究采用圆二色光谱和红外光谱比较羊乳和牛乳β-酪蛋白的结构特点, 并利用分光光度法对二者的巯基含量及溶解性进行了分析, 从功能性质方面的不同对两种蛋白结构的差异进行更好的说明。 圆二色光谱测得羊乳和牛乳β-酪蛋白二级结构中主要以无规卷曲为主, 但羊乳β-酪蛋白的无规卷曲含量(50.2%±0.16%)显著高于牛乳β-酪蛋白(43.8%±0.14%), 其有序结构中α-螺旋含量(2.7%±0.21%)、 β-折叠含量(15.3%±0.08%)显著低于牛乳β-酪蛋白(4.3%±0.13%, 19.5%±0.12%), β-转角含量分别为31.8%±0.11%和32.4%±0.09%, 差异不显著; 红外光谱测得羊乳β-酪蛋白二级结构中α-螺旋、 β-折叠、 β-转角含量分别比牛乳β-酪蛋白低18%~20%, 9%~10%, 0.6%~1%, 无规卷曲含量比牛乳β-酪蛋白高17%~19%。 对两种蛋白功能性质的研究表明, 羊乳β-酪蛋白与牛乳β-酪蛋白表面巯基含量基本一致19~20 μmol·g-1, 但羊乳β-酪蛋白总巯基含量[(28.35±0.13) μmol·g-1]显著低于牛乳β-酪蛋白[(46.72±0.21) μmol·g-1]; 羊乳β-酪蛋白与牛乳β-酪蛋白的等电点较为接近(pH为4~5), 且在等电点附近前者的溶解性低于后者, 而远离等电点时前者溶解性则高于后者。 研究结果说明与牛乳β-酪蛋白相比, 羊乳β-酪蛋白分子的无序性和柔韧性更高, 胶束内部结构更加的柔软疏松。
羊乳 牛乳 β-酪蛋白 圆二色光谱 红外光谱 二级结构 Goat milk Bovine milk β-casein Circular dichroism Fourier transformation infrared spectroscopy Secondary structure 
光谱学与光谱分析
2020, 40(3): 770
作者单位
摘要
中国农业大学食品科学与营养工程学院, 北京 100083
牛乳作为一种营养全面的理想食物, 已成为人们日常生活中不可或缺的一部分, 与此同时人们也越来越关注乳制品的品质, 因此快速、 灵敏的检测方法的开发和使用显得尤为重要。 基于三维荧光指纹技术, 建立了一种牛乳品质检测与评价的新方法, 该方法可以通过三维荧光特征图谱, 得到相对应的牛乳成分信息。 和常规的荧光方法相比, 三维荧光法可以提供更丰富, 更全面的物质信息。 首先根据牛乳在不同实验条件影响下荧光强度的变化及图谱的改变, 确定了最佳的预处理条件, 接着分别对牛乳抗生素残留以及受热程度的判别进行了研究。 对于兽药残留分析, 可以检测出牛乳中含量在05 mg·L-1以上的新霉素; 对于牛乳受热程度判分析, 利用三维荧光技术结合平行因子法(PARAFAC)对生鲜乳、 巴氏杀菌乳及UHT灭菌乳的定性判别, 当组分数为3时, 中心连续系数可达9763%。 因此, 三维荧光指纹技术具有快速准确的检测牛乳品质的潜力。
三维荧光 牛乳品质评价 预处理条件 抗生素 热处理 Three-dimensional fluorescence Milk quality evaluation Pretreat factors Antibiotics Heat-treated 
光谱学与光谱分析
2018, 38(5): 1633
刘微 1,2,3,*李萌 1,2任皓威 1,2刘宁 1,2,3
作者单位
摘要
1 国家乳业工程技术研究中心, 黑龙江省乳品工业技术开发中心, 黑龙江 哈尔滨150028
2 乳品科学教育部重点实验室(东北农业大学), 黑龙江 哈尔滨150030
3 东北农业大学食品学院, 黑龙江 哈尔滨150030
β-酪蛋白是人乳酪蛋白的主要成分, 但它在牛乳中的含量却很小。 β-酪蛋白在两者中含量的差异, 是人乳比牛乳更易消化的原因之一, 研究人乳与牛乳β-酪蛋白结构和功能的差异, 对研制出更适合婴儿肠道的, 新型人乳模拟型婴儿配方奶粉具有指导性的意义。 用紫外分光光度法研究人乳β-酪蛋白和牛乳β-酪蛋白的溶解性、 巯基含量、 乳化性等功能性质, 用荧光光谱和红外光谱分析比较两种蛋白的结构特点。 两种蛋白等电点十分接近(pH 4.0~5.0), 在等电点附近时, 人乳β-酪蛋白的溶解性(10.83%)低于牛乳β-酪蛋白(11.83%), 而偏离等电点时人乳β-酪蛋白具有更高的溶解性, 人乳β-酪蛋白的乳化活性指数(110~140 m2·g-1)高于牛乳β-酪蛋白(70~130 m2·g-1), 两种蛋白的表面巯基(SH)相似[(18.47±0.08)和(18.67±0.17) μmol·g-1], 而牛乳β-酪蛋白总巯基的含量[(47.46±0.23) μmol·g-1]大于人乳β-酪蛋白[(26.17±0.12) μmol·g-1], 两种蛋白官能团相似, 均含有β-折叠结构, 人乳β-酪蛋白的氢键数量和内部的疏水性均小于牛乳β-酪蛋白。 结果表明, 人乳β-酪蛋白比牛乳β-酪蛋白具有更少的α-螺旋和β-折叠等二级结构, 具有更疏松灵活的三级结构, 同时也具有更高的分子的表面活性。
人乳β-酪蛋白 牛乳β-酪蛋白 光谱研究 功能特性 结构特性 Human milk β-casein Bovine milk β-casein Spectroscopic study Functional properties Structural characteristics 
光谱学与光谱分析
2014, 34(12): 3281
作者单位
摘要
中国农业大学食品科学与营养工程学院, 北京 100083
近年来随着人们对乳制品需求的不断增加, 将复原乳冒充或添加在鲜乳中出售的现象也日益严重, 亟需简单、 快速的检测方法监测掺假行为。 利用同步荧光技术, 分别对两种鲜牛乳(未经杀菌的生牛乳和低温处理的巴氏杀菌乳)掺杂复原乳的情况进行了定性判别和定量分析。 以各类样本及全部样本的判别正确率作为定性判别模型的评价指标; 以相关系数(r)、 校正均方根误差(RMSEC)和预测均方根误差(RMSEP)作为定量分析模型的评价指标。 通过分析牛乳的三维荧光图谱确定同步荧光扫描的固定波长差Δλ值为80 nm; 在对图谱进行二阶求导后, 偏最小二乘-判别分析法(PLS-DA)对生鲜牛乳、 巴氏杀菌乳和复原乳的种类判别总正确率可达100%, 并且在判断两种鲜乳中是否添加复原乳时, 校正集样品的正确率均可达到100%, 预测集样品的正确率分别为75%和81.25%, 鲜牛乳和复原乳的种类判别模型, 以及鲜乳与掺假乳的定性判别模型均取得了良好的效果; PLS回归对同步光谱值与复原乳含量建立线性关系时, 两种鲜乳定量模型的r值分别为0.911 2和0.936 7, RMSEC分别为0.042 2和0.038 4, RMSEP分别为0.054 8和0.057 5, 鲜乳中复原乳含量的定量分析模型的r值均可达到0.9以上, 能对添加量较高的样品进行预测。 因此, 同步荧光技术可以较为准确、 快速的检测鲜牛乳中是否掺杂复原乳。
同步荧光技术 牛乳 复原乳 定性判别 定量分析 Fluorescence spectroscopy Fresh milk Reconstituted milk Discrimination analysis Quantitative analysis 
光谱学与光谱分析
2014, 34(10): 2685
作者单位
摘要
1 甘肃农业大学食品科学与工程学院, 甘肃 兰州 730070
2 中国农业大学教育部功能乳品重点实验室, 北京 1000831
3 畜产品北京市高等学校工程研究中心, 北京 100083
4 Cornell University, Ithaca, New York, USA
运用荧光、 圆二色谱及紫外光谱手段, 研究了六种不同物理或化学条件处理后, 牛乳铁蛋白(Bovine lactoferrin, bLF)三级、 二级结构及二硫键的变化。 荧光结果显示: 6 mol·L-1盐酸胍、 8 mol·L-1尿素和50 mmol·L-1二硫苏糖醇三种处理后bLF溶液的最大发射波长从333 nm红移至354 nm, 疏水基团大量暴露, 三级结构发生明显变化; 100 ℃加热5 min、 超声(450 W, 5 s, 6个脉冲)、 1%巯基乙醇处理后, bLF溶液荧光强度明显减弱, 最大发射波长几乎无变化。 圆二色谱结果表明: 经盐酸胍处理, bLF中α-螺旋结构消失, 其余五种处理, 二级结构的变化较小。 紫外光谱数据表明: 二硫苏糖醇对bLF二硫键破坏最严重, 超过总二硫键含量的55%, 超声次之, 盐酸胍、 巯基乙醇和加热破坏较少。 结果对进一步明确乳铁蛋白的构效关系提供了一定的依据。
牛乳铁蛋白 空间构象 荧光光谱 圆二色光谱 二硫键 Bovine lactoferrin Circular dichroism Spectroscopic analysis Structure characteristic Disulfide bond 
光谱学与光谱分析
2012, 32(1): 162

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!