作者单位
摘要
浙江工业大学光电子智能化技术研究所,浙江 杭州 310023
实现了基于PbS量子点掺杂的近红外S-C-L超宽带低噪声光纤放大器(QDFA)。以紫外(UV)固化胶为光纤纤芯本底,以PbS量子点作为增益介质,由973 nm单模激光器、隔离器、波分复用器、量子点掺杂光纤等构成全光路结构,在1470~1620 nm的宽波带区间实现了对信号光的放大。结果表明:在1550 nm波长附近,QDFA的带宽为75 nm。当输入信号光功率为-23 dBm时,开关增益为16 dB~19 dB(净增益为12.26 dB~15.26 dB),噪声系数约为3 dB。实验观测到了较明显的激励阈值和增益饱和现象,确定了适用的量子点掺杂浓度与光纤长度之间的线性关系。所实现的QDFA的带宽、C波带增益平坦度、噪声系数等指标优于常规的掺铒光纤放大器(EDFAs),L波带增益平坦度略低于经优化的多光纤EDFAs。
光纤光学 放大器 PbS量子点 量子点掺杂光纤 增益带宽 最佳掺杂浓度 激励阈值 
光学学报
2018, 38(10): 1006006
程成 1,2,*黄媛 1姚建华 2
作者单位
摘要
1 浙江工业大学 光电子智能化技术研究所,杭州 310023
2 浙江省高端激光制造装备协同创新中心,杭州 310014
测量了不同组份比例x的CdSxSe1-x/ZnS(核/壳)量子点的吸收谱和发射谱,确定了量子点的吸收系数、吸收截面和发射截面.量子点吸收截面随粒径的增大而增大、随x的增大而减小.采用紫外固化胶,制备了掺杂浓度为0.1~5 mg/mL的CdS0.4Se0.6 /ZnS量子点光纤,测量了不同掺杂浓度量子点光纤中473 nm泵浦功率的吸收衰减速率.吸收衰减速率和吸收截面弱关联于掺杂浓度.测量了光致荧光光谱强度随光纤长度和量子点浓度的变化.量子点光纤的光致荧光峰值强度随掺杂浓度和光纤长度变化而变化,且存在一个与最大峰值强度对应的饱和掺杂浓度和光纤长度.本文的实验结果有助于进一步构建新型的CdSxSe1-x/ZnS量子点增益型光电子器件.
CdSxSe1-x/ZnS量子点 吸收截面 光致荧光光谱 量子点掺杂光纤 量子点光纤传光特性 CdSxSe1-x/ZnS quantum dots Absorption cross-section Photoluminescence spectrum Quantum dot doped fiber Transmission of the doped fiber 
光子学报
2017, 46(9): 0916001
作者单位
摘要
浙江工业大学光电子智能化技术研究所, 浙江 杭州 310023
实现了一种硒化铅(PbSe)量子点掺杂的光纤放大器(QDFA)。以直径为4 nm 的PbSe 量子点作为光纤增益介质,由量子点掺杂光纤、980 nm 单模激光器、波分复用器、隔离器等组成全光传输结构,在1250~1370 nm 的宽带区间实现了信号光的放大。实验表明:对于纤芯直径为50 μm 的多模量子点掺杂光纤,激励阈值为62 mW,-3 dB 宽带达120 nm,-1 dB 平坦带宽为90 nm,增益可达12 dB。与传统的掺铒光纤放大器相比,QDFA 的带宽更宽,增益更平坦,噪声也较低。该QDFA 为解决目前密集型光波复用(DWDM)系统对光纤通信放大器日益增长的带宽需求提供了一种新的途径。
光纤光学 硒化铅量子点 量子点掺杂光纤 增益带宽 激励阈值 噪声系数 
光学学报
2016, 36(4): 0406002
作者单位
摘要
浙江工业大学光电子智能化技术研究所, 浙江 杭州 310023
采用粒直径为4.4 nm 的PbSe 量子点及紫外(UV)固化胶,制备了掺杂质量浓度为0.1~6.0 mg/mL、不同长度的固态纤芯量子点光纤.通过测量量子点光纤吸收谱,确定了量子点光纤980 nm 波长随掺杂浓度和光纤长度变化的吸收截面.测量了量子点光纤的光致荧光(PL)谱,其峰值光强随掺杂浓度和光纤长度变化,存在一个与最大峰值强度对应的掺杂浓度和光纤长度.实验结果有助于对PbSe量子点光纤放大器和激光器的进一步研究.
光纤光学 PbSe量子点 UV 胶 量子点掺杂光纤 掺杂浓度 光纤长度 
光学学报
2015, 35(9): 0906002
作者单位
摘要
浙江工业大学激光与光电子技术研究所, 浙江 杭州 310023
以PbSe量子点作为激活增益介质,在由量子点掺杂光纤、波分复用器、光纤光栅等组成的全光纤环形谐振腔中,实验首次观测到了波长为1550 nm、稳定连续的激光振荡。在980 nm激光二极管(LD)抽运下,发现了明显的抽运激励阈值。低于激励阈值时,没有激光;高于激励阈值时,激光输出功率随激励功率线性增大。激光输出为多模,通过光纤弯绕方式可选出单模输出。对于50 μm纤芯直径的多模量子点光纤,当入纤抽运功率为68 mW时,实测激光输出功率为19.2 mW(多模)和6.31 mW(单模),激光的3 dB线宽小于0.1 nm,抽运效率分别为28%和9.3%。
激光器 PbSe量子点 量子点掺杂光纤 光纤激光器 激励阈值 
光学学报
2013, 33(9): 0914001
作者单位
摘要
浙江工业大学 激光与光电子技术研究所,杭州 310023
制备了一种以紫外(UV)固化胶为纤芯本底的CdSe/ZnS量子点掺杂光纤.通过测量不同掺杂浓度和光纤长度下的量子点光致荧光光谱,得到了荧光峰值强度与量子点掺杂光纤浓度和长度的关系,确定了UV胶纤芯本底下的量子点的吸收系数、合适的掺杂浓度和光纤长度.结果表明:UV胶在光纤中具有吸收小、收缩率低、与石英光纤包层折射率匹配、性能稳定等特点,是一种比较理想的实验室制备量子点光纤纤芯本底的材料.
CdSe/ZnS量子点 UV胶 量子点掺杂光纤 光致荧光光谱 CdSe/ZnS quantum dot UV curable adhesive Quantum-dot doped fiber Photoluminescence spectrum 
光子学报
2011, 40(6): 888
作者单位
摘要
浙江工业大学激光与光电子技术研究所, 浙江 杭州 310023
制备了一种CdSe/ZnS量子点掺杂光纤,测量了不同掺杂浓度和光纤长度下的量子点光致荧光光谱,得到了荧光峰值波长的红移随量子点光纤掺杂浓度和光纤长度的变化。观测对比了4种不同纤芯本底材料(UV胶、甲苯、正己烷和正癸烷)随光纤长度增加的红移,发现在不同的本底材料中,红移随光纤长度的增加的速率不同。在不同本底材料和不同的掺杂浓度下,最大红移均趋向于20 nm的同一饱和值,该饱和值取决于量子点第一吸收峰的半峰全宽。
光纤通信 CdSe/ZnS量子点 量子点掺杂光纤 光致荧光 红移 掺杂浓度 
光学学报
2011, 31(4): 0406002
作者单位
摘要
浙江工业大学 应用物理系,杭州 310023
制备了一种半导体量子点CdSe/ZnS低浓度掺杂的光纤,测量了不同掺杂浓度和不同光纤长度下光纤出射端的光致荧光光谱,分析了掺杂光纤长度和浓度对量子点光纤荧光光谱特性的影响.结果表明,与掺入光纤前相比,光纤中的量子点荧光发射峰值波长出现红移.在掺杂光纤长度为1~20 cm和掺杂浓度为(0.33~2.5)×10-2mg/mL的实验范围内,红移量随着掺杂光纤长度的增加和掺杂浓度的提高而增大.对给定的激励功率,荧光发射峰值强度对应有一个最佳的量子点光纤长度.对于给定的量子点光纤长度,荧光发射峰值强度对应有一个最佳的量子点掺杂浓度.
CdSe/ZnS量子点 量子点掺杂光纤 二次吸收-发射 光致荧光光谱 CdSe/ZnS quantum dot Quantum-dot doped fiber Re-absorption/excitation effect Photoluminescence spectra 
光子学报
2009, 38(7): 1751

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!