作者单位
摘要
哈尔滨工业大学(深圳)深圳市城市与土木工程防灾减灾重点实验室&深圳市土木工程智能结构系统重点实验室,广东 深圳 518055
由于锈蚀层分布不均匀和覆盖层材料的影响,现有无损检测技术很难实现对钢板锈蚀厚度的精确检测。基于太赫兹(THz)波对非极性材料的高透射性及对极性金属材料的反射性,介绍了一种利用太赫兹时域光谱(THz-TDS)实现对覆盖层下钢板锈蚀厚度的无损检测方法。实验表明:在有效频率0.2~1.2 THz内,锈蚀产物和覆盖层材料环氧树脂、橡胶、水泥净浆的折射率分别为2.80,1.94,2.18和2.04。THz透射谱中样品和参考信号的延迟时间差与材料的折射率呈线性关系。THz反射信号可以识别钢板表面锈蚀层,且能够准确测定大于40 μm的锈蚀层厚度。覆盖层材料下的钢板锈蚀可以从THz反射信号中幅值的数量和衰减进行判断,通过幅值对应延迟时间差实现准确率大于90%的覆盖层和锈蚀层的厚度测定,证明了THz-TDS用于覆盖层下钢板锈蚀厚度检测的实用性和准确性。
太赫兹时域光谱 锈蚀厚度 锈蚀层 覆盖层 无损检测 
光学学报
2022, 42(13): 1312001
作者单位
摘要
1 广东省科学院中乌焊接研究所 中国-乌克兰材料连接与先进制造“一带一路”联合实验室 广东省现代焊接技术重点实验室,广东 广州 510650
2 北京科技大学 自动化学院 北京市工业波谱成像工程技术研究中心,北京 100083
采用光纤激光器开展了碳钢板表面锈蚀层激光清洗研究,通过白光干涉仪、光学显微镜、拉曼光谱仪等研究了激光扫描速度对锈蚀层去除质量的影响。研究表明,当激光扫描速度小于2 000 mm/s时,因光斑搭接率高,热累积效应强,试样表面出现基材熔化重凝现象,同时试样表面发生二次氧化,生成了复杂的铁的氧化物膜层,此时试样表面粗糙度最小。当激光扫描速度增加到3000 mm/s时,试样表面锈蚀层去除干净,露出金属基底本身色泽,基材表面二次氧化减弱。当线速度继续增加时,因光斑搭接率低,锈蚀层吸收的激光能量少,仅有部分锈蚀被去除,试样表面开始出现残留锈蚀层,且随着线速度的增加,残留锈蚀层和试样表面粗糙度增加。通过调节扫描速度可以获得较好的除锈效果,工艺优化后,激光功率为120 W时,除锈效率达到1.5 m2/h。
激光除锈 扫描速度 锈蚀层 表面粗糙度 laser rust removal laser scanning speed rust layer surface roughness 
红外与激光工程
2022, 51(5): 20210389
查榕威 1,2,3余立冬 1,2,3李奔 1,2,3白杨 1,2,3
作者单位
摘要
1 西北大学 光子学与光子技术研究所, 西安7027
2 省部共建西部能源光子技术国家重点实验室, 西安71017
3 陕西省全固态激光及应用工程技术研究中心, 西安710127
激光清洗过程监控是准确去除金属锈蚀层、有效避免金属基体损伤的关键。利用图像处理技术研究了30 mm×30 mm较大面积Q235B钢板在不同光斑搭接率下的清洗次数与清洗度的变化规律,得到50%的最佳光斑搭接率。利用激光诱导等离子体光谱研究了0.47 mm×0.47 mm微小面积Q235B钢板的皮尔逊相关系数随清洗次数的变化趋势,得到了不同厚度锈蚀层下的最佳清洗次数。在此基础上,将图像处理法与LIPS分析法协同使用,利用LIPS分析法能够根据微小面积锈蚀层厚度不同而动态校正最小清洗次数的特点,弥补了图像处理法无法精确控制激光清洗过程的缺陷,99.1%的清洗度表明两种方法的协同使用可对Q235B钢板大面积激光清洗过程进行有效监控。
激光清洗 锈蚀层 激光诱导等离子体光谱 图像处理 过程监控 Laser cleaning Rust layer Laser-induced plasma spectroscopy Image processing Process control 
光子学报
2021, 50(7): 249
作者单位
摘要
1 江苏大学材料科学与工程学院, 江苏 镇江 212013
2 苏州德威尔卡光电技术有限公司, 江苏 苏州 215000
采用波长为1064 nm的光纤激光器对Q345钢表面锈层进行激光清洗,研究了激光扫描速度对清洗质量的影响。结果表明:当扫描速度小于1000 mm·s -1时,激光对基体的损伤较大;当扫描速度达到5000 mm·s -1时,部分锈蚀仍残留于材料表面;当扫描速度为3000 mm·s -1时,清洗效果较好且基体不会受到损伤。随着扫描速度从1000 mm·s -1增加到6000 mm·s -1,清洗后Q345钢表面的铁含量呈现先增加后降低的趋势,而氧含量则是先降低再升高。当扫描速度为3000 mm·s -1时,Q345钢表面清洗后铁元素的质量分数达到了峰值,约为90%,氧元素的质量分数则达到谷值,约为7%;铁与氧的化合物较少,且钢的表面粗糙度亦较低,Ra≈6.9 μm。通过调节扫描速度可以获得较好的激光清洗效果;激光清洗后,Q345钢表面的电化学腐蚀性能有所提高。
激光技术 激光清洗 锈蚀层 扫描速度 元素分布 铁与氧的化合物 表面粗糙度 
中国激光
2020, 47(10): 1002010
作者单位
摘要
哈尔滨工业大学先进焊接与连接国家重点实验室, 黑龙江 哈尔滨 150001
采用干式/液膜辅助式激光清洗方法对高强钢表面的锈蚀层进行处理,研究了激光功率对试样表面状态的影响规律,并对两种方法的除锈机理进行了对比分析。结果表明:两种清洗方法都能有效去除试样表面的锈蚀层,且低功率下液膜辅助式激光清洗效果比干式激光清洗效果更好。优化的液膜辅助式激光除锈工艺参数为:激光功率400 W,脉冲频率10 kHz,脉宽30 ns,此时试样表面氧元素的质量分数为3.38%,试样的表面粗糙度为3.04 μm。
激光技术 锈蚀层 干式激光清洗 液膜辅助激光清洗 表面质量 
中国激光
2019, 46(7): 0702003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!