作者单位
摘要
1 合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009
2 合肥工业大学光电技术研究院, 安徽 合肥 230009
高次凸非球面镜是光学系统中至关重要的元件, 通常作为次镜来补偿光学系统的轴外像差, 但其检验方法一直是一大难点。基于背向零位检测方法, 提出利用三透镜与单折射面组合的形式来补偿高次非球面的法线像差。首先选取高次非球面的二次比较面来简化计算, 基于三级像差理论求解系统的初始结构, 对高次非球面的法线像差进行补偿,使用ZEMAX软件仿真与优化后, 设计结果完全满足要求。随后结合一块有效通光口径为170 mm、顶点曲率半径为266.8 mm的高次凸非球面反射镜, 测得镜面的面形精度均方根为0.019 λ (λ = 632.8 nm), 满足实际检测要求, 验证了所提设计方法的可行性。此方法为大口径高次凸非球面的检验提供了一个新的思路。
几何光学 高次凸非球面 零位补偿 三级像差 geometric optics high-order convex aspheric surface zero compensation third order aberration 
量子电子学报
2024, 41(1): 57
作者单位
摘要
常州工学院光电工程学院,江苏 常州 213032
非球面反射镜通常使用零位补偿器配合干涉仪进行面形检测,因此零位补偿器的加工和装配精度直接决定了检测结果的可靠性。提出一种具备良好通用性的基于计算全息片(CGH)的补偿器误差标定方法。以一块Φ856 mm、f/1.54的双曲面反射镜作为待测非球面镜,首先设计反射式CGH,运用光线追迹法得到CGH的相位函数,使其引入的球差与待测非球面主镜的法线像差相同,再由ZEMAX仿真计算验证该设计的正确性,并根据相位函数加工出主全息。在同一块玻璃基片上设计和加工对准全息带用于标定光路的调整。实验结果表明,所制作的CGH标定零位补偿器的精度达到λ/80。可见对于大口径、快焦比的凹非球面反射镜,所提方法仍然适用,因此可用于指导多数正轴非球面镜的零位补偿器标定。
零位补偿 干涉检测 计算全息片 相位函数 光线追迹 
激光与光电子学进展
2024, 61(4): 0422001
作者单位
摘要
1 吉林大学 机械与航空航天工程学院,吉林 长春 130025
2 中国科学院长春光学精密机械与物理研究所 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
为提高离轴三反消像散(TMA)光学系统中次镜的制造效率和精度,开展了离轴凸非球面反射镜组合加工和零位检测的研究工作。首先,介绍了方形(298 mm×264 mm)高次离轴凸非球面反射镜的光学参数、技术指标和总体加工路线;其次,提出了铣磨加工工艺策略以及基于气囊和沥青的小磨头组合加工工艺;最后,阐述了光学零件抛光阶段采用的背部透射零位补偿检测法和Offner型零位补偿器,并采用光线追迹法对镜片的零位补偿检验面形畸变进行了矫正,最终面形RMS值为0.025λλ=632.8 nm),满足技术指标要求。上述组合加工工艺和背部透射零位补偿检测方案可以显著提升高次离轴凸非球面反射镜的加工精度和效率。
离轴凸非球面 气囊抛光 沥青平滑 零位补偿 畸变矫正 off-axis convex aspheric bonnet polishing pitch smoothing null lens testing distortion correction 
红外与激光工程
2022, 51(9): 20220611
作者单位
摘要
中国科学院上海技术物理研究所空间主动光电技术重点实验室, 上海 200083
利用有限远零位补偿方法检验非球面时,装调环节多,检验精度低。提出了无限远前后零位补偿结合的非球面检验系统,通过在待检镜球心前后位置处各放置一个补偿透镜,使像差在前后区间具有相关性。基于像差理论,对两片补偿透镜的光学参数进行了推导求解,分析了初始参量与归一化数据的关系,再利用光学软件对计算结果进行缩放与优化。在不同的前零位补偿透镜放大率下,设计了四个具有不同曲率半径的凹抛物面镜,并给出了非球面镜的最大口径和最大相对孔径。采用具有1/10 口径比的补偿透镜,实现了口径为3.7 m、相对孔径为1/1.2的非球面镜面形检验,面形波前误差峰谷(PV)值优于0.1λ(λ=633 nm)。容差分析结果证明了检验系统的可行性。针对口径为500 mm、相对孔径为1/1的抛物面镜开展了原理实验,从可检验的最大非球面镜口径和实施难度方面对所提方法与常用方案进行了比较,前后零位补偿结合系统的设计面形波前误差PV值为0.061λ,面形波前误差均方根(RMS)值为0.009λ,实现了面形波前误差RMS值优于λ/40的检测精度。前后零位补偿结合的检验系统适用于具有4 m量级大口径、大相对孔径的非球面镜的高精度面形检测。
光学设计 几何光学 非球面辅助光学系统 零位补偿检验 无限远光路 三级像差理论 
光学学报
2020, 40(17): 1722003
厉宏兰 1,2,3,*袁吕军 1,2徐节速 1,2,3李倩 1,2,3康燕 1,2
作者单位
摘要
1 中国科学院国家天文台 南京天文光学技术研究所,南京 210042
2 中国科学院天文光学技术重点实验室(南京天文光学技术研究所),南京210042
3 中国科学院大学,北京 100049
在大口径、快焦比非球面的补偿检验中,入射光线在短距离内发生大角度急剧折转,导致干涉仪面形检验结果图像产生非线性畸变,严重影响了数控小磨盘抛光的位置精度和误差去除效率。为了校正离轴非球面在补偿检验中产生的图像畸变,提出了一种校正非线性畸变图像的方法,通过同心环带法确定畸变中心位置并利用光线追迹建立被检镜到干涉图的映射关系。针对某一光学系统的520 mm×250 mm的离轴抛物面主镜进行了畸变图像的校正,校正结果面形与工件面形的位置偏差降到1 mm以下,满足小磨盘抛光的工作要求。
非线性光学 畸变校正 光线追迹 离轴非球面 零位补偿检验 nonlinear optics distortion correction ray trace off-axis aspheric mirror null compensation test 
应用光学
2019, 40(4): 638
作者单位
摘要
1 安徽大学光电信息获取与控制教育部重点实验室, 安徽 合肥 230601
2 中国工程物理研究院激光聚变研究中心, 四川 绵阳 621900
研究了自适应补偿器(ANC)中两大补偿器——可变形镜(DM)和部分补偿镜之间的轴向距离标定技术,提出了一种多零位约束方法,利用一块校准镜,通过DM形变实现不同位置的零位检测,从而构建多个测量方程用以限制误差耦合,实现ANC空间间距自标定。通过仿真和实验验证了该标定方法的高精度。该方法摒弃了外部直接测量手段,使得ANC和整体干涉仪的集成化成为可能。
测量 自由曲面检测 自适应干涉仪 自适应零位补偿 间距标定 
中国激光
2018, 45(11): 1104005
作者单位
摘要
北京空间机电研究所 国防科技工业光学超精密加工技术创新中心(先进制造类), 北京 100094
介绍一块Ф1300mmULE材料非球面反射镜的加工与检测方法。采用非球面超声铣磨、机器人研抛等多个工序组合加工技术完成了非球面反射镜的加工。在非球面检测中, 采用大口径三坐标测量的方法进行了研磨阶段的面形检测, 通过Z向滤波的方法对面形拟合过程中的噪点误差进行了处理, 将研磨阶段的面形精度提高至5μm PV值。在干涉仪测量阶段, 采用气囊支撑方法对反射镜的重力误差进行了卸载, 通过非线性误差矫正的方法去除了零位补偿检测所带来的非线性误差, 反射镜的最终精度达到0.016λRMS。试验结果表明, 大口径非球面反射镜各项技术指标均满足设计要求, 所用工艺方法适用于加工更大口径的非球面反射镜及其他类型的大口径非球面光学元件。
光学测量 光学加工 非球面反射镜 零位补偿 面形精度 optical measurement optical fabrication aspheric mirror null compensation surface figure error 
光学技术
2018, 44(2): 221
武中华 1,2,3,*袁吕军 1,2朱永田 1,2何丽 1,2
作者单位
摘要
1 中国科学院 国家天文台南京天文光学技术研究所, 江苏 南京 210042
2 中国科学院 天文光学技术重点实验室, 江苏 南京 210042
3 中国科学院大学, 北京 100049
针对快焦比特大非球面度离轴非球面反射镜, 设计了3片式Offner补偿器。为应对3片式补偿器对中心偏差及镜间隔严格的公差要求, 设计了相应的补偿器镜筒结构。该结构使透镜中心倾斜及平移调整相分离, 实现补偿器的高精度装调。根据中心偏差测量仪的测量结果, 2片补偿镜之间倾斜误差44″, 平移误差35 μm, 镜间隔误差38 μm; 补偿镜组与场镜之间倾斜误差53″, 平移误差42 μm, 镜间隔误差72 μm, 满足检测使用要求。利用该补偿器及4D动态干涉仪对精抛光阶段的离轴非球面进行检测, 面形结果PVq值达到0135λ, RMS值达到0019 5λ, 优于设计要求。
光学检测 离轴非球面 零位补偿 镜筒结构设计 补偿器装调 optical testing off-axis aspherical surface null compensator design of barrel structure assembling of compensator 
应用光学
2017, 38(4): 639
作者单位
摘要
1 南京理工大学电子工程与光电技术学院, 江苏 南京 210094
2 中国科学院上海技术物理研究所, 上海 200083
折反射式零位补偿检验是一种综合了Offner折射式和Maksutov反射式补偿检验优点的凹非球面检验 方法,补偿能力强,检测光路紧凑。大口径和大相对孔径非球面检验是制约其加工质量提高的难题,针对口径为4 m、 偏心率为1、顶点曲率半径为16 m的大口径凹抛物面反射镜,设计了折反射式零位补偿器。基于三级像差理论对补偿器的初始结构进行了 规划和计算,采用Zemax软件对初始结构参数进行了优化,得出了补偿器的最终结构,检验光路轴向尺寸约12 m,系统优化后剩余波相差为0.005λ。设计和仿真结果表明,这种折反射式零位补偿器对大口径凹非球 面镜的加工检测是非常有利的。
几何光学 大口径非球面检验 折反射式零位补偿检验 三级像差理论 光学系统设计 geometric optics large-aperture aspheric surface test catadioptric null compensation test third-order aberration theory optical system design 
量子电子学报
2017, 34(4): 394
作者单位
摘要
北京空间机电研究所, 北京 100094
介绍了Ф420 mm熔石英高次非球面透镜的加工与检测方法。对现有数控加工工艺进行了优化, 通过分工序加工方式, 依次采用机器人研磨、抛光和离子束修形技术完成了透镜的加工。进行非球面透镜检测时, 考虑透镜的凹面为球面, 利用球面波干涉仪对其面形进行了直接检测, 剔除干涉仪标准镜镜头参考面误差后, 透镜凹面的精度达到0.011λ-RMS; 针对透镜的凸面为高次非球面, 采用基于背后反射自准法的零位补偿技术对其进行面形检测, 其精度达到0.013λ-RMS。最后, 采用一块高精度标准球面镜对加工后透镜的透射波前进行了自消球差检测, 得到其波前误差为0.013λ-RMS。试验结果表明, 非球面透镜各项技术指标均满足设计要求。所述工艺方法亦适用于更大口径的非球面透镜及其他类型非球面光学元件的高精度加工.
非球面透镜 光学加工 透镜加工 透镜检测 零位补偿 面形精度 aspheric lens optical fabrication lens fabrication lens test null compensation surface figure error 
光学 精密工程
2016, 24(12): 3068

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!