作者单位
摘要
1 华中科技大学 光学与电子信息学院,湖北 武汉 430074
2 浙江舜宇光学有限公司,浙江 余姚 315400
3 湖南工业大学 轨道交通学院,湖南 株洲 412007
为了满足半导体缺陷检测系统对成像系统高分辨的要求,依据系统的特点和设计指标,设计了一种近紫外-可见光大数值孔径折反式物镜。在近紫外-可见光波段对光学玻璃材料的色散特性进行分析,通过二级光谱理论计算,选择合适的玻璃材料,对光学系统的二级光谱进行了校正。该物镜使用11片球面透镜,结构紧凑。设计出一套光谱范围为360~520 nm、数值孔径为0.9、焦距为5.65 mm、视场大小为0.8 mm、工作距离为0.8 mm的物镜,采用无限远共轭折反式结构。设计结果表明:该物镜的MTF较好,全视场波像差小于0.09λ(λ=632.8 nm),各种几何像差均得到了较好的校正,满足复消色差条件,并且结构简单,具有较长的工作距离,为实际的生产装配和应用提供了便利。
宽光谱 大数值孔径 折反式物镜 物镜设计 光学设计 wide spectrum large numerical aperture catadioptric objective lens objective lens design optical design 
红外与激光工程
2023, 52(9): 20230470
作者单位
摘要
上海航天控制技术研究所,上海 201109
星敏感器在轨工作期间周期性地受到以太阳光为主要来源的杂散光干扰,导致恒星或感知目标捕获失效,轻者姿态数据无效,重者面临被非合作目标定向攻击。在杂散光抑制过程中,遮光罩可将太阳光消减至10−5~10−6量级,从而有效减少太阳光对像面的污染。然而,在遮光罩研制过程中,因散射模型精度不高、挡光环刃口厚度无法有效测量,导致实际遮光罩消光性能达不到预期设计要求。文中在粗糙度为1.0 μm铝合金基材上测量Magic black消光涂层,并拟合出偏差小于10%的散射模型;针对挡光环刃口的特殊构造,提出利用同轴远心光路检测刃口厚度,检测精度优于1.2 μm;最后以遮光罩消光比定量测试以及外场杂散光观星测试考核遮光罩杂散光抑制性能。结果表明,用拟合后的BRDF散射模型,比朗伯散射体精度提升40%;刃口检测可保障遮光罩消光性能,使得遮光罩消光比理论仿真与实际测试偏差小于12%;暗室杂散光测试使得在24°太阳光入射时像面平均灰度为55.80;外场观星杂散光测试时精度变化量不超过0.5″。该星敏感器遮光罩检测方法可为其他光电类敏感器提供理论基础与技术支持。
星敏感器 遮光罩 杂散光抑制 BRDF 刃口检测 star sensor baffle stray light suppression BRDF edge inspection 
红外与激光工程
2023, 52(9): 20230450
蔡梦雪 1,2,3,4王孝坤 1,2,3,4张志宇 1,2,3,4李凌众 1,2,3,4[ ... ]张学军 1,2,3,4
作者单位
摘要
1 中国科学院长春光学精密机械与物理研究所,吉林 长春 130033
2 中国科学院大学,北京 100049
3 应用光学国家重点实验室,吉林 长春 130033
4 中国科学院光学系统先进制造技术重点实验室,吉林 长春 130033
由于仪器传递函数(Instrument Transfer Function, ITF)能准确反映仪器在空间频率上的响应特征,被广泛应用于仪器规范之中。目前多采用刻有单一台阶特征或不同周期正弦特征的平面测试板对干涉仪的ITF进行检测。针对平面测试板无法完成高陡度球面/非球面镜检测时ITF标定的问题,提出了根据球面台阶测试板标定高陡度镜面检测的子孔径拼接ITF的方法。通过超精密车削技术制作了球面台阶测试板,并对其进行拼接检测,根据梯度定位法和旋转矩阵完成检测孔径中台阶的定位及采样,利用傅里叶变换方法实现对台阶实测面形的功率谱密度求解,最后与理想面形功率谱密度做比获得ITF。对口径100 mm、曲率半径100 mm、带有同心圆环台阶结构的球面台阶测试板进行拼接检测以及数据分析,实验结果表明:在1 mm−1的空间频率范围内,各个子孔径对高陡度镜面的检测水平平均可达到82.72%,具有较好的检测精度,随后ITF逐渐衰减,当空间频率在1.5 mm−1左右时,仅能达到40%~60%。
高陡度球面 高陡度非球面 仪器传递函数 子孔径拼接 球面台阶测试板 high-steep spherical surface high-steep aspheric surface instrument transfer function sub-aperture stitching spherical step test board 
红外与激光工程
2023, 52(9): 20230462
作者单位
摘要
北京空间机电研究所,北京 100094
同轴四反式光学系统的研制可采用非球面主镜和四镜一体化成型制造法,该方法极大地降低了系统零件复杂度,同时减轻了整机质量,提高了装机效率,但对后期光学系统装调的自由度产生了约束,因此,在镜面制造过程中,两者的光轴一致性需要精确测量及控制。在现有干涉测量法的基础上,提出了一种检测两面共体非球面镜光轴一致性的方法。在干涉检测光路中,两个非球面表面的光轴通过精密调整和严格标定后分别引出到两个计算全息片(CGH)补偿器上,CGH经过设计后,其特定区域可发出平行光,经另一片CGH反射后在干涉仪中形成表征两片CGH夹角的干涉条纹,解算干涉条纹的波前倾斜可得出两非球面的光轴偏差,对一两面共体待测非球面光学零件进行了CGH设计和检测光路的误差分析,显示测试精度可以达到1″。设计投产了CGH补偿器,搭建干涉检测光路,完成了光轴一致性的测量,数据处理解析出的波前倾斜为(1.544λ,0.441λ),计算出光轴夹角为(0.007 0°, 0.002 0°),使用经纬仪复测的两片CGH的夹角为(0.007 1°, 0.001 9°)。使用轮廓仪法对干涉测量法结果进行了比对验证,分别扫描主镜和四镜的面形轮廓,统一坐标系后,主镜和四镜的光轴夹角为(0.007 1°, 0.002 0°),三者显示出较高的一致性。该方法具有直观性强、检测精度高的优点。
光学检测 光轴一致性测量 计算全息 两面共体非球面 optical testing optical axis testing computer generated hologram two-sided community aspheric 
红外与激光工程
2023, 52(9): 20230476
作者单位
摘要
季华实验室,广东 佛山 528200
在分析了超轻量化大口径碳化硅(SiC)反射镜(轻量化率≥90%)表面去除原理和难点的基础上,为了实现此类型反射镜的快速加工,提出了一种采用有限元分析进行验证的五轴高效超精密铣磨方法。通过对反射镜铣磨过程中产生共振的机理进行分析,解释了共振的原因,利用有限元分析方法进行仿真模拟,验证了加工过程镜面不会被破坏且系统不发生共振,设计环形工装支撑并对口径Ф510 mm、壁厚 4 mm、轻量化率92%的SiC反射镜进行快速铣磨加工。反射镜初始面形峰谷(PV)值为956.1 μm,镜面去除量为1 mm,加工时间仅为48 h,相较于人工研磨研制周期降低了90%。通过检测,反射镜面形PV值为3.5 μm,满足反射镜抛光前面形精度优于4 μm的要求。
铣磨 SiC反射镜 有限元分析 超轻量化 milling and grinding SiC mirror finite element analysis ultra-lightweight 
红外与激光工程
2023, 52(9): 20230270
作者单位
摘要
1 中国科学院西安光学精密机械研究所,陕西 西安 710119
2 国防科技大学 智能科学学院,湖南 长沙 410003
大口径离轴非球面光学元件的应用需求呈大幅增长趋势,如空间/地基大口径望远镜、航空光电和地面跟踪瞄准装置等。同时,日益增大的元件口径和越来越短的加工周期使得高效高精度制造工艺成为大口径离轴非球面光学元件加工的核心问题。精密磨削作为大口径离轴非球面元件的材料高效去除工序,磨削面形精度(Peak-Valley, PV)和损伤层深度直接决定了后续的抛光难度与周期。因此,开展了大口径离轴非球面光学镜面的控形控性高精度磨削研究,即提升大口径离轴非球面光学元件的磨削面形精度的同时降低磨削损伤深度,实现二者在数值上的协同逼近。在控形方面,确立了机床结构方面影响低频面形形状与精度的主要影响因素,探究了A轴零位误差、Y轴对中误差、砂轮形状尺寸误差、磨削方法路径和Z轴面形补偿等因素对面形精度的影响规律以实现工艺参数的协同控制与精度优化。在控性方面,获得了磨削损伤深度随磨削参数的变化规律并建立了磨削损伤深度与磨削表面粗糙度的映射关系,提出针对大口径离轴非球面磨削亚表层损伤抑制策略。对640 mm口径离轴非球面镜进行形性控制磨削实验后,面形精度达到3 μm,表面粗糙度Ra小于24 nm,Rz小于0.2 μm,依照表面粗糙度与亚表面损伤层深度映射关系,亚表面损伤层深度5 μm左右,逼近面型精度。经验证后续抛光周期大幅缩短,对大口径光学元件的高效高精度加工具有重要参考价值。
精密磨削 形性精度 面形精度 亚表层损伤 离轴非球面 precision grinding contour-performance accuracy form accuracy subsurface damage off-axis aspherical surface 
红外与激光工程
2023, 52(9): 20230454
作者单位
摘要
1 哈尔滨工业大学 机电工程学院 精密工程研究所,黑龙江 哈尔滨 150001
2 华中科技大学 智能制造装备与技术全国重点实验室,湖北 武汉 430074
机器人辅助轮带磨削是一种基于计算机控制光学成形技术的确定性加工方法,具有成本低、柔性好、智能程度高且操作空间大的优点,因此机器人辅助轮带磨削作为一种较低成本的高精度、多自由度加工方法逐渐受到关注。文中介绍了所设计的机器人辅助轮带磨削系统结构及其加工原理,装置通过气动系统进行输出压力的柔顺控制。研究了任意加工姿态下机器人辅助轮带磨削中的恒力加载问题,分析了轮带磨削工具悬臂组件重力分量对其末端输出接触力的影响,建立了末端执行器的重力分量模型,并提出了基于姿态传感器的重力补偿控制方法,能够实现0~63 N范围内的恒力控制,并且最大压力波动小于1.82%,重力补偿系统的响应时间小于300 ms,实现了轮带磨削工具在任意姿态下的恒力加载。最后,根据Hertz接触理论和Preston方程完成了磨削工具在工件接触区域内的压强分布和速度分布分析,建立了轮带磨削工具的去除函数模型,并对碳化硅曲面与硫化锌非球面进行修形磨削实验,验证了装置加工的稳定性。
机器人辅助加工 轮带磨削 重力补偿 去除函数 碳化硅曲面 硫化锌非球面 robot-assisted machining wheel abrasive belt grinding gravity compensation removal function silicon carbide curved surface zinc sulfide aspheric 
红外与激光工程
2023, 52(9): 20230471

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!