作者单位
摘要
1 苏州科技大学化学与生命科学学院,江苏 苏州 215009
2 苏州大学功能纳米与软物质研究院江苏省碳基功能材料与器件重点实验室,江苏 苏州 215123
为获得新颖高效的热激活延迟荧光(TADF)材料,以二苯并吡啶并喹喔啉(BPQ)为受体(A),三苯胺(TPA)、吩噁嗪(PXZ)为供体(D),合成两种TADF材料:BPQPXZ和BPQTPA。研究表明,两种材料都具有典型的延迟荧光特性、较小的单重态与三重态的能级差(ΔEST)和较大的振子强度(f)。基于强受体强供体组合的BPQPXZ的器件实现了深红光发射,发射波长达到660 nm,但受能隙的影响,外量子效率(EQE)仅有1.0%。基于强受体弱供体组合的BPQTPA,因其TPA刚性小于PXZ,BPQTPA的供受体扭曲程度小,轨道交盖程度大,f更大,故BPQTPA具有更大的荧光量子产率(82.7%)。同时因TPA的给电子能力比PXZ弱,BPQTPA内电荷转移效应减小,导致发射峰蓝移,因此基于BPQTPA的器件发射555 nm的黄光,与BPQPXZ相比,BPQTPA器件的启亮电压降低至2.8 V,电流效率、功率效率分别提高了32倍和36倍,EQE提升了6倍,达到7.0 %。
材料 延迟荧光 有机发光二极管 二苯并吡啶并喹喔啉 电致发光 
光学学报
2024, 44(8): 0816001
作者单位
摘要
1 杭州医学院医学影像学院,浙江 杭州 310053
2 云南大学物理与天文学院云南省高校光电子器件工程重点实验室,云南 昆明 650500
3 中国科学院上海硅酸盐研究所人工晶体研究中心,上海 201899
采用高功率半导体激光端面泵浦技术,在均一浓度Nd∶YAG中心轴沿泵浦光通光方向可产生温度梯度,引起热透镜效应,降低激光输出功率与光束质量。本文结合静态热场数值仿真,建立Nd∶YAG在方形平顶光泵浦条件下的热源方程,研究渐变浓度Nd∶YAG在高功率激光泵浦下的温度分布。当初始泵浦功率为1000 W、泵浦脉宽时间为46 μs、重复频率为1 kHz时,均一浓度Nd∶YAG的吸收系数为5.8 cm-1,其中心轴沿通光方向的温度由185 ℃逐次下降到2、4、6、8 mm处的106、51、29、26 ℃;相应地,每经过2 mm,温度下降率分别为39.5、27.5、11.0、1.5 ℃/mm。与此相对应,本文构建出一款渐变浓度Nd∶YAG整体式结构,每段厚度均为1 mm,总长度为4 mm。将4段Nd∶YAG的吸收系数依次调控为1.5、2.1、3.3、9.7 cm-1,则沿泵浦光通光方向的中心轴温度基本维持在86.5 ℃,在渐变浓度Nd∶YAG中实现沿泵浦光传输方向的温度均匀分布。
均一浓度Nd∶YAG 渐变浓度Nd∶YAG 数值仿真 温度分布 
光学学报
2024, 44(7): 0716002
作者单位
摘要
1 中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西 西安 710119
2 电磁空间安全全国重点实验室,天津 300308
硫系玻璃作为一种优秀的红外材料,具有透过范围广、物化性能稳定、易于成纤等特点,是制备红外传能光纤的理想材料之一。从硫系玻璃吸收损耗抑制和散射损耗抑制两方面入手,采用气(氯气)/气(玻璃蒸汽)、固(铝)/液(玻璃熔液)化学反应除杂方式降低光纤吸收损耗,建立了三维激光显微成像系统,检测玻璃及光纤内部的微米和亚微米量级的缺陷,优化制备工艺降低光纤散射损耗,制备出损耗为0.087 dB/m(@4.778 μm)的硫系玻璃光纤。分别利用光纤激光器(波长为2.0 μm)和双波长输出的光学参量振荡器(OPO)激光器(波长为3.8 μm 和4.7 μm)进行激光传能实验,在单模光纤和多模光纤中分别实现了6.10 W(@2.0 μm)和6.12 W(@3.8 μm和4.7 μm)激光传输。
材料 红外光纤 硫系玻璃 超低损耗 激光传输 激光损伤 
光学学报
2024, 44(7): 0716001
作者单位
摘要
闽南师范大学物理与信息工程学院光场调控及其系统集成应用福建省高校重点实验室,福建 漳州 363000
Ge/Si雪崩光电二极管(APD)被广泛应用于近红外探测领域,但由于Ge和Si之间存在4.2%的晶格失配,故难以获得高性能的Ge/Si APD。提出在Ge/Si键合界面处引入多晶硅(poly-Si)键合中间层,弱化Ge/Si失配晶格对APD器件性能的影响。poly-Si引入后键合界面电场发生变化,导致APD内部的电场重新分布,极大地影响了器件性能。因此,重点对Ge吸收层和Si倍增层的掺杂浓度进行调控,探究了掺杂浓度对Ge/Si APD电场、复合率、载流子浓度、碰撞电离等性能的影响,最终设计出高性能键合Ge/Si APD。本工作将为低噪声、高增益Ge/Si APD的研究提供理论指导。
材料 Ge/Si雪崩光电二极管 晶格失配 poly-Si键合层 掺杂浓度 
中国激光
2024, 51(8): 0803001
作者单位
摘要
中国矿业大学信息与控制工程学院,江苏 徐州 221116
提出了一种基于电磁诱导透明(EIT)的多功能偏振无关超表面,其基础结构由1个金属十字结构和4个方环结构组成,并引入了可调控材料硅(Si)以及二氧化钒(VO2),以实现温光双控。利用模拟计算和理论模型分析得到了基础结构作为双明模间接耦合形成EIT透明窗口的结论。由于EIT以及可调控材料的特性,本设计可以在分子传感、可控慢光以及双通道温光双控开关等领域实现应用,并且具有优异的性能。该结构对蔗糖溶液的传感灵敏度为97.6 GHz/(kg/m3),在分子检测领域展示出了巨大潜力。该结构实现了对慢光效应的可选择控制。依据EIT的作用机理,提出了利用可调控材料改变结构谐振进而控制电磁响应的设计思路,并实现了一种双通道温光双控开关,为今后的EIT超表面设计提供了参考。
表面光学 超表面 可调控材料 分子传感 慢光效应 温光双控开关 
中国激光
2024, 51(6): 0603001
作者单位
摘要
电子科技大学材料与能源学院,四川 成都 611731
作为平面异质结钙钛矿太阳能电池(PSCs)的重要组成部分,电子传输层(ETL)在提升PSCs器件的性能和稳定性上起着重要的作用。尽管最常用的两类ETL材料——二氧化钛(TiO2)和二氧化锡(SnO2),均以纳米颗粒和溶液方式制备,TiO2却面临着电子迁移率低、器件滞回效应大、化学稳定性差、需高温制备等问题,相比之下,SnO2具有优异的光电学性质、更高的稳定性、可低温制备等优势。聚焦于基于SnO2 ETL的PSCs稳定性和界面电荷提取,首先综述了SnO2材料的物理性质和优点;然后从制备和成膜方法(如化学浴沉积、溶液旋涂等)入手,进一步阐明了SnO2的体相和表面缺陷;最后基于SnO2 ETL的缺陷,从界面钝化、体相掺杂和双电子层构筑等三方面重点介绍了提升PSCs稳定性和界面载流子提取效率的途径。该综述可助力PSCs性能和稳定性的进一步提升,为该新兴光伏技术进一步实用化贡献有用的见解。
钙钛矿太阳能电池 二氧化锡电子传输层 运作稳定性 界面调控 载流子提取 
激光与光电子学进展
2024, 61(5): 0516002
作者单位
摘要
北京工业大学理学部,北京 100124
高能射线探测成像技术在高能物理研究、医疗影像和工业探测等领域具有重要应用。非铅金属卤化物具有毒性低、稳定性良好、发光效率高、Stokes位移大的优点,在X射线间接探测领域表现出重要的应用潜力。本文综述了近年来非铅金属卤化物闪烁体及薄膜成像器件的研究进展,首先介绍了材料组分与发光机理,然后列举了与闪烁体性能相关的关键参数,概述了单晶、粉末与纳米晶材料合成方法,阐述了近些年研究工作中关于提高成像器件分辨率的新颖思路,重点讨论了复合薄膜、陶瓷玻璃、结构化闪烁体等形式的新型闪烁体成像器件。最后,对目前闪烁体探测成像面对的挑战和潜在解决方案进行了总结与展望。
非铅金属卤化物 闪烁体 成像 薄膜 发光 
激光与光电子学进展
2024, 61(3): 0316005
作者单位
摘要
1 Research Center for Humanoid Sensing, Zhejiang Lab , Hangzhou 311121, Zhejiang , China
2 State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong , China
3 Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, Sichuan , China
Glass with heavy doping of noble metal nanoparticles is expected to exhibit high optical nonlinearity. In this study, the effects of glass composition, structure, and heat treatment on the formation of silver nanoparticles (Ag NPs) in phosphate-bismuthate (PB) glass are investigated. By optimizing the chemical composition and preparation parameters, strong localized surface plasmon resonance is achieved in the PB glass with a silver mass fraction of more than 13%, which is 20 and 6 times higher than that in bismuthate and phosphate glasses reported previously, respectively. The high solubility of the phosphate component and the self-reduction effect of the bismuthate component jointly contributed to the stability and high content of Ag NPs in the PB glass. Z-scan measurements show that such heavy doping PB glass has a reverse saturable absorption coefficient of -14×10-12 m·W-1 and a saturable absorption coefficient of 4.94×10-12 m·W-1 at 800 nm. Furthermore, the heavy doping PB glass exhibits excellent thermal stability, making it promising for the fabrication of nonlinear optical fibers. In addition, with a heavily silver-doped PB glass rod as the core and a commercial silicate glass tube as the cladding, a composite glass fiber with high Ag-NP doping is successfully fabricated using a "molten-core" fiber drawing method.
phosphate-bismuthate glass silver nanoparticle optical nonlinearity molten-core fiber drawing 
激光与光电子学进展
2024, 61(3): 0316006
刘海毅 1,2齐鹏飞 1,2,*
作者单位
摘要
1 南开大学现代光学研究所,天津 300350
2 天津市微尺度光学信息技术科学重点实验室,天津 300350
上转换发光即发射光子能量高于激发光子能量的反斯托克斯过程,可以有效实现能量重整与转化,在生物成像、太阳能电池、光催化及光制冷等方面有着巨大应用前景。作为后摩尔时代战略性新材料,二维材料由于激子偶极矩强度大、线宽窄、无序性低、束缚能高等优势,为实现室温高效激子上转换发光创造了有利条件,近年来吸引了研究者的广泛兴趣。本文首先介绍实现光子上转换的发光机制,包括声子辅助、双光子吸收、俄歇复合等途径,进而梳理基于六方氮化硼、单层过渡金属二硫化物、二维钙钛矿等典型二维材料体系的上转换发光效应研究,同时针对上转换发光效率低的问题,讨论对二维材料上转换发光的调控和增强方式,最后展望二维材料体系激子上转换发光效应的应用前景。
上转换发光 材料 二维材料 激子 非线性光学 
激光与光电子学进展
2024, 61(3): 0316007
作者单位
摘要
1 西北工业大学物理科学与技术学院,陕西 西安 710072
2 军事科学院国防科技创新研究院,北京 100071
奇异点是非厄米系统中的奇点,由两个或多个特征值及其相应的特征向量同时简并产生。超表面是在亚波长尺度上构建的二维人工电磁材料,其结构和性能的人工可设计性为研究非厄米现象提供了新的途径。本文首先介绍了非厄米系统和奇异点的基本理论并概述了奇异点的最新研究进展,之后介绍了超表面奇异点太赫兹传感的研究进展,最后总结了奇异点传感仍然存在的问题,并展望其发展趋势。
超表面 奇异点 太赫兹 传感 
激光与光电子学进展
2024, 61(3): 0316003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!