Author Affiliations
Abstract
1 National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, Collaborative Innovation Center of Advanced Microstructures, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
2 School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100191, China
Cascaded holography coupled with the secret-sharing scheme has recently gained considerable attention due to its enhanced information processing and encryption capabilities. Here, we propose a new holographic iterative algorithm and present the implementation of cascaded liquid crystal (LC) holography for optical encryption. Each LC layer acts as the secret key and can generate a distinct holographic image. By cascading two LC elements, a new holographic image is formed. Additionally, we showcase the dynamic optical encryption achieved by electrically switching LCs with combined electric keys. This work may offer promising applications in optical cryptography, all-optical computing, and data storage.
liquid crystals holography optical encryption 
Chinese Optics Letters
2023, 21(12): 120003
Chenhao Wan 1,*Wei Chen 2,**Qian Cao 3,***
Author Affiliations
Abstract
1 School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2 National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
3 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
We give an introduction to the special issue on spatiotemporal optical fields and time-varying optical materials, composed of six articles.
Chinese Optics Letters
2023, 21(12): 120001
Author Affiliations
Abstract
1 Department of Electro-Optics and Photonics, University of Dayton, Dayton, Ohio 45434, United States
2 Optics and Photonics, Riverside Research Institute, Beavercreek, Ohio 45431, United States
3 Department of Physics, Pusan National University, Geumjeong-Gu, Busan 46241, Republic of Korea
We report the experimental and theoretical investigation of tilted spatiotemporal optical vortices with partial temporal coherence. The theoretical study shows that the instantaneous spatiotemporal optical vortex is widely variable with the statistical orbital angular momentum (OAM) direction. While decreasing temporal coherence results in a larger variability of OAM tilt, the average OAM direction is relatively unchanged.
STOVs tilted optical vortex partial temporal coherence optical OAM partially coherent OAM 
Chinese Optics Letters
2023, 21(12): 120002
Author Affiliations
Abstract
1 Department of Electro-Optics and Photonics, University of Dayton, Dayton, Ohio 45469, USA
2 Department of Physics, Pusan National University, Busan 46241, Republic of Korea
We demonstrate the temporal manipulation of spatiotemporal optical vortices (STOVs) by utilizing Airy pulses. By combining a STOV with an Airy temporal profile, the STOV exhibits nondispersive, self-accelerating, and self-healing features inherited from the Airy pulse propagation. Such features will enhance the control of STOVs in time.
spatiotemporal vortex Airy pulse manipulation 
Chinese Optics Letters
2023, 21(8): 080002
Zhen Jie Qi 1Jun Yan Dai 1,2,3,*Si Ran Wang 1Qun Yan Zhou 1[ ... ]Tie Jun Cui 1,2,3,****
Author Affiliations
Abstract
1 State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
2 Institute of Electromagnetic Space, Southeast University, Nanjing 210096, China
3 Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
4 National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China
5 National Key Laboratory of Electromagnetic Information Control and Effects, Shenyang 110035, China
6 Key Laboratory of High-Speed Circuit Design and EMC of Ministry of Education, Xidian University, Xi’an 710071, China
Simultaneous wireless information and power transfer (SWIPT) architecture is commonly applied in wireless sensors or Internet of Things (IoT) devices, providing both wireless power sources and communication channels. However, the traditional SWIPT transmitter usually suffers from cross-talk distortion caused by the high peak-to-average power ratio of the input signal and the reduction of power amplifier efficiency. This paper proposes a SWIPT transmitting architecture based on an asynchronous space-time-coding digital metasurface (ASTCM). High-efficiency simultaneous transfer of information and power is achieved via energy distribution and information processing of the wireless monophonic signal reflected from the metasurface. We demonstrate the feasibility of the proposed method through theoretical derivations and experimental verification, which is therefore believed to have great potential in wireless communications and the IoT devices.
simultaneous wireless information and power transfer asynchronous space-time-coding digital metasurface quadrature phase-shift keying modulation 
Chinese Optics Letters
2023, 21(8): 080005
Author Affiliations
Abstract
1 Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Science and Technology of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
2 Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
As a newly discovered type of structured light, a spatiotemporal optical vortex (STOV), which is remarkable for its space–time spiral phase and transverse orbital angular momentum (OAM), has garnered substantial interest. Most previous studies have focused on the generation, characterization, and propagation of STOVs, but their nonlinear frequency conversion remains largely unexplored. Here, we experimentally demonstrate the generation of green and ultraviolet (UV) STOVs by frequency upconversion of a STOV carried near-infrared (NIR) pulse emitted by a high repetition rate Yb-doped fiber laser amplifier system. First, we verify that the topological charge of spatiotemporal OAM (ST-OAM) is doubled along with the optical frequency in the second-harmonic generation (SHG) process, which is visualized by the diffraction patterns of the STOVs in the fundamental and second-harmonic field. Second, the space–time characteristic of NIR STOV is successfully mapped to UV STOV by sum-frequency mixing STOV at 1037 nm and Gaussian beams in the green band. Furthermore, we observe the topological charges of the ST-OAM could be degraded owing to strong space–time coupling and complex spatiotemporal astigmatism of such beams. Our results not only deepen our understanding of nonlinear manipulation of ST-OAM spectra and the generation of STOVs at a new shorter wavelength, but also may promote new applications in both classical and quantum optics.
ultraviolet spatiotemporal optical vortex second-harmonic generation sum-frequency generation 
Chinese Optics Letters
2023, 21(8): 080004
Author Affiliations
Abstract
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Zhangjiang Laboratory, Shanghai 201204, China
Spatiotemporal optical vortex (STOV) wavepacket carrying transverse photonic orbital angular momentum (OAM) has been extensively studied in the past few years. In this Letter, we propose and study a novel STOV wavepacket with multiple phase singularities embedded in different space–time domains using analytical and numerical approaches. By tuning different parameters used for designing the wavepacket, it is possible to engineer both the magnitude and orientation of the photonic OAM in space–time. The vectorially controllable OAM will pave new avenues and facilitate applications such as novel optical communication, studying complicated quantum systems, and spin-and-OAM interactions.
spatiotemporal optical vortices photonic orbital angular momentum ultrafast optics 
Chinese Optics Letters
2023, 21(8): 080003

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!