郑嘉乾 1,2卢霄 3,4鲁亚杰 3,5王迎军 1,2[ ... ]卢建熙 3,4,*
作者单位
摘要
1 1.华南理工大学 国家人体组织功能重建工程技术研究中心, 广州 510006
2 2.华南理工大学 材料科学与工程学院, 广州 510641
3 3.上海骨科生物材料技术创新中心, 上海 201114
4 4.上海贝奥路生物材料有限公司, 上海 201114
5 5.中国人民解放军空军军医大学 西京医院, 骨科, 西安 710032
为了获得满意的临床疗效, 优质医用生物陶瓷应该具备怎样的性能一直困扰着广大研究者。自20世纪90年代以来, 作者团队致力于研发医用生物陶瓷, 从基础科学研究到成果转化, 再到临床应用, 积累了丰富的研究和应用经验, 相继提出了“生物适配”和“精准生物适配”理论。本文围绕“医用生物陶瓷(磷酸钙类材料)的功能性生物适配”这一主题分享本团队的学术研究成果和临床应用经验,从结构适配、降解适配、力学适配、应用适配等四个角度, 结合骨科临床应用背景, 探讨如何实现其生物适配和设计制造的有效衔接,旨在为医用生物陶瓷的设计、制造、监管和应用提供依据和建议。
生物陶瓷 生物适配 材料微结构 生物降解 骨再生 血管化 专题评述 bioceramics bioadaptability material microstructure biodegradation osteo-regeneration vascularization perspective 
无机材料学报
2023, 39(1): 1
Author Affiliations
Abstract
1 School of Mechanical Engineering, Dalian University of Technology, Dalian, People’s Republic of China
2 School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, People’s Republic of China
Integral thin shells made of high strength aluminum alloys are urgently needed in new generation transportation equipment. There are challenges to overcoming the co-existing problems of wrinkling and splitting by the cold forming and hot forming processes. An innovative technology of ultra-low temperature forming has been invented for aluminum alloy thin shells by the new phenomenon of ‘dual enhancement effect’. That means plasticity and hardening are enhanced simultaneously at ultra-low temperatures. In this perspective, the dual enhancement effect is described, and the development, current state and prospects of this new forming method are introduced. This innovative method can provide a new approach for integral aluminum alloy components with large size, ultra-thin thickness, and high strength. An integral tank dome of rocket with 2 m in diameter was formed by using a blank sheet with the same thickness as the final component, breaking through the limit value of thickness-diameter ratio.
aluminum alloy thin shell ultra-low temperature forming dual enhancement effect 
International Journal of Extreme Manufacturing
2022, 4(3): 033001
Rong Xiang 1,2,*
Author Affiliations
Abstract
1 State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2 Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan
Carbon nanotube (CNT), particularly single-walled CNT, possesses exceptional properties, and can be utilized in many high-end applications including high-performance electronics. However, the atomic arrangement of a CNT determines its band structure, making the atomic-precision fabrication one of most important topics for the development of this material. In this perspective, the author gives a personal summary on the history, current status of the atomic-precision fabrication of CNT and outlines the remaining challenges as well as the possible paths that may lead the production of atomically precise CNTs from ‘fabrication’ to ‘manufacturing’.
atomic precision manufacturing carbon nanotube nanomaterial 
International Journal of Extreme Manufacturing
2022, 4(2): 023001
Author Affiliations
Abstract
RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
The GHz burst mode of femtosecond laser pulses can significantly improve ablation efficiency without deteriorating ablation quality. However, various parameters involved in GHz burst mode make it difficult to optimize the processing for practical implementation. In this Perspective, the author gives the history, current status, and future challenges and prospects of this new strategy to answer the question, ‘will GHz burst mode create a new path to femtosecond laser processing?
International Journal of Extreme Manufacturing
2021, 3(4): 043001
作者单位
摘要
Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology, Wuhan 430074, China
energy storage nitrogen fixation non-thermal plasma 
Frontiers of Optoelectronics
2018, 11(1): 0192

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!