光通信技术, 2022, 46 (6): 61, 网络出版: 2023-01-28  

量子噪声随机加密技术研究

Research on quantum-noise random cipher technology
作者单位
1 中国人民解放军61623部队, 北京 100840
2 中国人民解放军陆军工程大学 通信工程学院, 南京 210007
3 中国人民解放军31106部队, 南京 210016
摘要
针对光网络安全防护问题, 从物理层安全性评估、实验验证2个层面深入研究量子噪声随机加密(QNRC)物理层抗截获传输技术。首先, 介绍了国内外QNRC的发展现状, 凝练了一套物理层安全性评估通用方法。然后, 提出一种基于光域解密的强度移位键控-量子噪声随机加密(ISK-QNRC)实验方案, 针对该方案中高分辨率、高采样速率的数/模转换器制造工艺问题, 提出一种并联ISK-QNRC方案并进行了验证, 结果表明该方案信息传输安全、有效。最后, 分析了QNRC技术的典型应用场景及发展趋势。
Abstract
Aiming at the problem of optical network security protection, the anti-interception transmission technology of quantum noise random encryption(QNRC) physical layer is deeply studied from two aspects of physical layer security evaluation and experimental verification. Firstly, the development status of QNRC at home and abroad is introduced, and a set of general methods for physical layer security evaluation is summarized. Then, An experimental scheme of intensity shift keying quantum noise random encryption (ISK-QNRC) based on optical domain decryption is proposed. Aiming at the manufacturing process problems of high resolution and high sampling rate digital to analog converters in the scheme, a parallel ISK-QNRC scheme is proposed and verified. The results show that the scheme is safe and effective in information transmission. Finally, the typical application scenarios and development trends of QNRC technology are analyzed.
参考文献

[1] 陈毓锴, 蒲涛, 郑吉林, 等. 相位调制量子噪声随机加密系统的仿真验证[J]. 光学学报, 2020, 40(16): 24-29.

[2] PATEL K A, DYNES J F, MARINI M, et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Applied Physics Letters, 2014, 104(5): 175-179.

[3] 义理林, 柯俊翔. 混沌保密光通信研究进展[J]. 通信学报, 2020, 41(3): 168-181.

[4] WANG X, GAO Z, WANG X, et al. Bit-by-bit optical code scrambling technique for secure optical communication[J]. Optical Express, 2011, 19(4): 3503-3512.

[5] ZHU H, WANG R, PU T, et al. Experimental demonstration of optical stealth transmission over wavelength-division multiplexing network[J]. Applied Optics, 2016, 55(23): 6394-6398.

[6] TANIZAWA K, FUTAMI F. Single-channel 48-Gbit/s DP PSK Y-00 quantum stream cipher transmission over 400-km and 800-km SSMF[J]. Optics express, 2019, 27(18): 25357-25363.

[7] YOSHIDA M, KAN T, KASAI K, et al. 10 Tbit/s QAM quantum noise stream cipher coherent transmission over 160 km[J]. Journal of Lightwave Technology, 2020, 39(4): 1056-1063.

[8] IWAKOSHI T. Guessing probability under unlimited known-plaintext attack on secret keys for Y00 quantum stream cipher by quantum multiple hypotheses testing[J]. Optical engineering, 2018, 57(12): 126103-1-126103-7.

[9] JIAO H, PU T, ZHENG J, et al. Physical-layer security analysis of a quantum-noise randomized cipher based on the wire-tap channel model[J]. Optics Express, 2017, 25(10): 10947-10960.

[10] YANG X, ZHANG J, LI Y, et al. DFTs-OFDM based quantum noise stream cipher system[J]. Optical Fiber Technology, 2019, 52(11): 101939-1-101939-7.

[11] YU Q, WANG Y, LI D, et al. Secure 100 Gb/s IMDD transmission over 100 km SSMF enabled by quantum noise stream cipher and sparse RLS-volterra equalizer[J]. IEEE Access, 2020, 8: 63585-63594.

[12] NAIR R, YUEN H P. Comment on: Exposed-key weakness of αη[J]. Physics Letters A, 2008, 372(47): 7091-7096.

[13] OHHATA K, HIROTA O, HONDA M, et al. 10-Gb/s optical transceiver using the Yuen 2000 encryption protocol[J]. Journal of lightwave technology, 2010, 28(18): 2714-2723.

[14] YOSHIDA M, HIROOKA T, KASAI K, et al. Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km[J]. Optics express, 2016, 24(1): 652-661.

[15] TANIZAWA K, FUTAMI F. Digital coherent PSK Y-00 quantum stream cipher with 217 randomized phase levels[J]. Optics Express, 2019, 27(2): 1071-1079.

[16] AKUTSU S, DOI Y, HOSOI T, et al. 192 km relay transmission and HDTV transmission experiments by quantum Yuen-2000 transceiver[C]//American Institute of Physics. Proceedings of American Institute of Physics, Quantum Communication, Measurement and Computing&The Ninth International Conference. New York: American Institute of Physics, 2009: 331-334.

[17] FUTAMI F, KUROSU T, TANIZAWA K, et al. Dynamic routing of Y-00 quantum stream cipher in field-deployed dynamic optical path network[C]//Optical Fiber Communication Conference 2018(OFC2018), March 3-7, 2018, Santiago, America. New York: Optical Society of America, 2018: Tu2G. 5-1-Tu2G. 5-7.

陈毓锴, 蒲涛, 李云坤, 赵勇, 林克凌, 杨明, 徐逸帆, 李晋. 量子噪声随机加密技术研究[J]. 光通信技术, 2022, 46(6): 61. CHEN Yukai, PU Tao, LI Yunkun, ZHAO Yong, LIN Keling, YANG Ming, XU Yifan, LI Jin. Research on quantum-noise random cipher technology[J]. Optical Communication Technology, 2022, 46(6): 61.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!