光电工程, 2017, 44 (2): 216, 网络出版: 2017-03-31  

双Bowtie纳米光刻结构的聚焦特性研究

The investigation of focusing characteristic based on double Bowtie nano-lithography structure
作者单位
1 四川师范大学物理与电子工程学院,成都 610101
2 电子科技大学光电信息学院,成都 610054
摘要
Bowtie孔径结构已被广泛用于纳米直写光刻领域来获得超衍射聚焦光斑。然而,利用该结构获得的超衍射聚焦光斑呈椭圆形,影响了Bowtie结构的进一步应用。为了获得超衍射且圆形对称的聚焦光斑,本文提出了双Bowtie新型纳米光刻结构并利用Comsol软件仿真模拟了该结构的焦斑对称特性和电场增强特性。结果表明利用双Bowtie结构获得了圆形对称焦斑,并且出射面的电场强度得到了增强,是入射面电场强度的22倍。本文进一步将双Bowtie结构与金属/介质/金属结构相结合,使得局域增强后的透射光的传输距离(工作距)得到了显著延长。
Abstract
Bowtie aperture has been widely applied in the realm of nanometer direct-writing lithography for obtaining focusing spots beyond the diffraction limit. However, the obtained spot is elliptic-shape for the Bowtie case, which impacts the applications of the Bowtie structure. Double Bowtie aperture, as a novel nano-lithography structure, is proposed to attain circle-symmetric focusing spots beyond diffraction limit. The results demonstrate that circle-symmetry spots can be obtained, and the electric field intensity of transmission light is 22 times of that of incidence. By combining the double Bowtie structure with metal-insulator-metal, the propagation length of the enhanced transmission light is obviously prolonged.
参考文献

[1] Synge E H. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928, 6(35): 356-362.

[2] Shi Xiaolei, Hesselink Lambertus. Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage[J]. Japanese Journal of Applied Physics, 2002, 41(3B): 1632.

[3] Tanaka K, Ohkubo T, Oumi M, et al. Simulation of simultaneous tracking/data signal detection using novel aperture-mounted surface recording head[J]. Japanese Journal of Applied Physics, 2002, 41(3B): 1628.

[4] Tanaka K, Tanaka M. Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton[J]. Journal of Microscopy, 2003, 210(3): 294-300.

[5] Sendur K, Challener W. Near-field radiation of bow-tie antennas and apertures at optical frequencies[J]. Journal of Microscopy, 2003, 210(3): 279-283.

[6] Wang L, Xu X. Spectral resonance of nanoscale bowtie apertures in visible wavelength[J]. Applied Physics A, 2007, 89(2): 293-297.

[7] Jin Eric Xuan, Xu Xianfan. Finitte-difference time-domain studies on optical transmission through planar nano-apertures in a metal film[J]. Japanese Journal of Applied Physics, 2004, 43(1R): 407-417.

[8] Jin Eric Xuan, Xu Xianfan. Enhanced optical near field from a bowtie aperture[J]. Applied Physics Letters, 2006, 88(15): 153110- 153116.

[9] Kim S, Jung H, Kim Y, et al. Resolution limit in plasmonic lithography for practical applications beyond 2x-nm half pitch[J]. Advanced Materials, 2012, 24(44): OP337-OP344.

[10] Wang Yaohui, Yao Na, Zhang Wei, et al. Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme[J]. Plasmonics, 2015, 10(6): 1607-1613.

[11] 王耀辉. 局域表面等离子体纳米直写光刻原理与方法研究[D]. 成都: 中国科学院光电技术研究所, 2015.

[12] 王耀辉, 何家玉, 王长涛, 等. 增强型局域表面等离子体共振纳米直写光刻[J]. 光电工程, 2016, 43(1): 71-76.

    Wang Yaohui, He Jiayu, Wang Changtao, et al. Method investigation of direct-writing nanolithography based on enhanced local surface plasmon resonance[J]. Opto-Electronic Engineering, 2016, 43(1): 71-76.

[13] 杨志林. 金属纳米粒子的光学性质及过渡金属表面增强拉曼散射的电磁场机理研究[D]. 厦门: 厦门大学, 2006.

[14] Palik E D. Handbook of optical constants of solids[M]. San Diego: Academic Press, 1998.

[15] Xu T, Fang L, Ma J, et al. Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns[J]. Applied Physics B, 2009, 97(1): 175-179.

郑杰, 刘贤超, 黄跃容, 刘昀玥, 陈卫东, 李玲. 双Bowtie纳米光刻结构的聚焦特性研究[J]. 光电工程, 2017, 44(2): 216. Jie Zheng, Xianchao Liu, Yuerong Huang, Yunyue Liu, Weidong Chen, Ling Li. The investigation of focusing characteristic based on double Bowtie nano-lithography structure[J]. Opto-Electronic Engineering, 2017, 44(2): 216.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!