光子学报, 2019, 48 (4): 0428003, 网络出版: 2019-04-28  

自动多波段太阳辐射计光机设计及热力学有限元分析

Opto-mechanical Design and Thermodynamic Finite Element Analysis of Automatic Multi-band Solar Radiometer
作者单位
1 中国科学院安徽光学精密机械研究所 中国科学院通用光学定标与表征技术重点实验室, 合肥 230031
2 中国科学技术大学, 合肥 230026
摘要
研制了自动多波段太阳辐射计, 仪器包含8个光谱通道, 覆盖可见-近红外波段.通过二维转台和四象限跟踪组件, 可实现对太阳直射辐照度、天空辐亮度、气溶胶光学厚度、大气柱水汽含量和臭氧含量的实时自动测量, 并远程控制和传输数据.为减小温度变化对探测器响应的影响, 对光机头部的八通道主体部分进行了温控设计.结合野外环境的实际情况, 对关键部件八通道主体和散热外壳进行了热力学有限元分析.分析结果表明, 主要光学元器件的安装结构满足实际温度变化产生的零件形变需求; 增大外壳的散热面积可以有效提高八通道主体的温控效率, 增强野外环境适应性.仪器在敦煌辐射校正场长期工作, 经受住了风沙、雨水和温差等的测试, 其温控系统的温度维持在25±0.2℃, 表现出良好的稳定性, 验证了温控设计的可靠性.
Abstract
The automatic multi-band solar radiometer was developed, which contains eight spectral channels, covering visible-near infrared bands. By two-dimensional rotary table and four-quadrant tracking module, the instrument can accomplish real-time automatic measurement of direct solar irradiance, sky radiance, aerosol optical thickness, moisture content of large gas column and ozone content, and can control and transmit data remotely. In order to reduce the influence of temperature change on detector response, temperature control was designed for the eight-channel main part of the optical machine head. Based on the actual situation of the field environment, the thermodynamic finite element analysis of the key parts of the eight-channel main body and the heat dissipation enclosure was carried out. The results show that the installation structure of the main optical components can meet the requirements of parts deformation caused by actual temperature changes. Increasing the heat dissipation area of the enclosure can effectively improve the temperature control efficiency of the eight-channel body and enhance the adaptability of the field environment. Instrument in dunhuang radiation correction field worked for a long time with weathered sand, rain, and temperature, the temperature control system of temperature remain at 25±0.2℃, showing good stability and reliability of the design of temperature control.
参考文献

[1] CZAPLA-MYERS J S,LEISSO N P,ANDERSON N J,et al. On-orbit radiometric calibration of Earth-observing sensors using the Radiometric Calibration Test Site(RadCaTS) [C].SPIE,2012, 8390: 83902B.

[2] 尹亚鹏,李新,郑小兵等.场地自动化观测辐射计的设计与实现[J].大气与环境光学学报,2016,11(1) : 44-50.

    YIN Ya-peng,LI Xin,ZHENG Xiao-bing,et al. Design and implemeng of automated site observing radiometer[J]. Journal of Atmospheric and Environmental Optics,2016,11(1) : 44-50.

[3] 顾行发,田国良,余涛,等.航天光学遥感器辐射定标原理与方法[M].北京: 科学出版社, 2013: 199-200.

    GU Xing-fa,TIAN Guo-liang,YU Tao,et al.The radiometric calibration principle and method of space remote sensor [M].Beijing: Science Press, 2013: 199-200.

[4] BIGGAR S F, DINGUIRARD M C, GELLINAN D I,et al. 1991.Radiometric calibration of SPOT 2 HRV-A comparison of three methods[C].SPIE, 1991, 1493: 155-162.

[5] THOME K J. Validation plan for MODIS level 1 at sensor radiance[R]. Tucson: University of Arizona,1999.

[6] 刘恩超,李新,韦玮,等. 基于超光谱比值辐射仪的卫星自动化场地定标与分析[J]. 光谱学与光谱分析,2016,36(12): 4076-4081.

    LIU En-chao,LI Xin,WEI Wei,et al. Automatic field calibration and analysis of satellite based on hyper-spectral ratio radiometer[J]. Spectroscopy and Spectral Analysis, 2016,36(12): 4076-4081.

[7] 张学海, 戴聪明, 武鹏飞, 等. 折射率和粒子尺度对大气气溶胶光散射特性的影响[J].红外与激光工程,2017,46(12): 1211001.

    ZHANG Xue-hai, DAI Cong-ming, WU Peng-fei,et al. Effect of the refractive index and particle size parameter on light scattering properties of atmosphere aerosol[J]. Infrared and Laser Engineering, 2017,46(12): 1211001.

[8] 李新,郑小兵,尹亚鹏.场地自动化定标技术进展[J].大气与环境光学学报,2014,9(1): 17-21.

    LI Xin,ZHENG Xiao-bing,YIN Ya-peng.Progress in automated sitevicarious calibration technologies[J].Journal of Atmospheric and Environmental Optics,2014,9(1): 17-21.

[9] 邱刚刚,李新,韦玮,等.基于场地自动化观测技术的遥感器在轨辐射定标试验与分析[J].光学学报,2016,36(7): 0701001.

    QIU Gang-gang,LI Xin,WEI Wei,et al.Experiment and analysis of on-orbit radiometric calibration for remote sensors based on in-site automated observation technology[J].Acta Optica Sinica,2016,36(7): 0701001.

[10] 卞良,李保生,李东辉.CE318 型太阳光度计关键技术及误差分析[J].现代科学仪器,2013,6: 156-164.

    BIAN Liang,LI Bao-sheng,LI Dong-hui. Key technologies and error analysis of sun photometer CE318[J]. Modern Scientific Instruments,2013,6: 156-164.

[11] 陈丁跃.精密探测系统多学科优化与复合抗振冲控制[M]. 西安: 陕西科学技术出版社, 2006: 136-138.

[12] STARKS P J, WALTER-SHEA E A, SCHIEBE F R,et al. Temperature sensitivity characterization of a silicon diode array spectrometer[J]. Remote Sensing of Environment, 1995,51: 385-389.

[13] SALIM S G R, FOX N P, THEOCHAROUS E,et al. Temperature and nonlinearity corrections for a photodiode array spectrometer used in the field[J]. Applied Optics,2011,50(6): 866-875.

[14] World Meteorological Organization. Guide to Meteorological Instruments and Methods of Observation[R]. Geneva: WMO, 2012: 8.

[15] 中华人民共和国气象行业标准. QXT 69-2007[S]. 北京:气象出版社, 2007.

[16] World Meteorological Organization. Environmental pollution monitoring and research programme[R]. Geneva: WMO, 1984: 143.

[17] World Meteorological Organization. Revised instruction manual on radiation instruments and measurements[R]. Geneva: WMO, 1986: 149.

[18] World Meteorological Organization. Report of the WMO workshop on the measurement of atmospheric optical depth and turbidity [R]. Geneva: WMO, 1993: 659.

[19] 邱刚刚. 卫星辐射校正场自动化观测系统的研制与定标应用[D]. 合肥:中国科学技术大学,2017.

    QIU Gang-gang. Development and calibration applications of automatic observation system onsatellite radiometric calibration site[D]. Hefei: University of Science and Technology of China,2017.

[20] 王浩钢, 李海平, 刘家渠. 基于Creo的万向节叉头热力学有限元分析[J].金属铸锻焊技术, 2012,9: 85-87.

    WANG Hao-gang, LI Hai-ping, LIU Jia-qu. Thermal mechanics finite element analysis of universal joint fork head based on creo[J].Casting·Forging·Welding, 2012, 9: 85-87.

[21] 张岩.ANSYS Workbench 15.0有限元分析从入门到精通[M]. 北京: 机械工业出版社. 2014: 133-149.

张权, 李新, 张艳娜, 黄冬, 郑小兵. 自动多波段太阳辐射计光机设计及热力学有限元分析[J]. 光子学报, 2019, 48(4): 0428003. ZHANG Quan, LI Xin, ZHANG Yan-na, HUANG Dong, ZHENG Xiao-bing. Opto-mechanical Design and Thermodynamic Finite Element Analysis of Automatic Multi-band Solar Radiometer[J]. ACTA PHOTONICA SINICA, 2019, 48(4): 0428003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!