人工晶体学报, 2023, 52 (2): 334, 网络出版: 2023-03-18  

ZnW/β中ZnO含量对其催化四氢萘加氢裂化反应性能的影响

Effect of ZnO Content in ZnW/β on Its Catalytic Performance for Tetralin Hydrocracking Reaction
作者单位
中国石油大学(北京)化学工程与环境学院,北京 102249
摘要
Zn的引入不仅可以调控β分子筛的酸性质,而且还会影响催化剂的加氢活性。为了研究Zn的引入对催化剂加氢裂化反应性能的影响,利用浸渍法合成了一系列不同ZnO含量的ZnW/β加氢裂化催化剂,并对其物理化学性能进行了分析表征。研究了ZnO含量对其催化四氢萘加氢裂化制备BTX(苯/甲苯/二甲苯)催化性能的影响。结果表明,最高BTX收率随着ZnO含量的增加先升高(质量分数<1%时)后降低(质量分数>1%时),这是由于随着ZnO含量的增加,ZnW/β催化剂的强酸量和总酸量明显减小,抑制了四氢萘的过度裂化。而当ZnO的负载量达到1%(质量分数)后,ZnO与WO3反应会生成非活性组分ZnWO4晶体,非活性组分ZnWO4晶体的生成量随着ZnO的含量增大而增大,降低了催化剂中加氢活性组分WO3的含量,导致ZnW/β催化剂的加氢中心与酸中心匹配不佳。ZnO负载量为1%的ZnW/β催化剂在反应空时为0.36 h时达到最高的BTX收率(41.57%,质量分数),说明该催化剂的酸量适中且加氢中心与酸中心匹配最佳。因此,催化剂金属中心与酸中心合适的匹配及适中的酸强度是提高BTX收率的关键。
Abstract
The introduction of Zn can not only adjust the acid properties of β zeolite, but also affect the hydrogenation activity of catalyst. A series of ZnW/β hydrocracking catalysts with different ZnO contents were synthesized by impregnation method, and their physicochemical properties were analyzed in order to study the effect of Zn introduction on the hydrocracking reaction performance. The effect of ZnO content in the ZnW/β catalysts on the catalytic performance of hydrocracking of tetralin to prepare BTX (benzene/toluene/xylene) was investigated. The results show that the highest BTX yield firstly increases (<1%, mass fraction) and then decreases (>1%, mass fraction) with the ZnO content. The yield of BTX increases because the amount of strong acid and total acid of ZnW/β catalyst decreases obviously with the increase of ZnO contents, which inhibits the excessive cracking of tetralin. However, the yield of BTX decreases because the ZnO react with WO3 to form inactive ZnWO4 crystals when the load of ZnO reaches 1%(mass fraction), and the amount of inactive ZnWO4 crystals increase with the increase of ZnO contents, and the ratio of inactive ZnWO4 crystals to WO3 gradually increases, leading to decrease of the number of WO3 hydrogenation active centers. As a result, the hydrogenation center of ZnW/β catalyst does not match well with the acid center. The ZnW/β catalyst with 1% ZnO loadings has the highest BTX yield (41.57%, mass fraction) when the reaction space time is 0.36 h, which indicates that the acid amount of the catalyst is moderate and the matching between the hydrogenation center and the acid center is the best. Therefore, suitable matching of catalyst metal center and acid center and moderate acid strength are the key to improve the yield of BTX.
参考文献

[1] 米 多, 王 涛, 朱 玉. 2017年国内外芳烃供需分析[J]. 化学工业, 2018, 36(3):16-22+41.

[2] 谢晋文, 于国良. 甲苯/二甲苯供需格局变化及市场波折[J]. 中国石油和化工经济分析, 2017(8): 45-49.

[3] 禹 华. 国内纯苯生产及其下游产业链发展现状[J]. 合成纤维工业, 2017, 40(4):45-49.

[4] 吴 倩, 段惠峰, 李佟茗, 等. 菲加氢裂解制BTX的催化剂研究[J]. 燃料化学学报, 2012, 40(8): 996-1001.

[5] ARDAKANI S J, LIU X B, SMITH K J. Hydrogenation and ring opening of naphthalene on bulk and supported Mo2C catalysts[J]. Applied Catalysis A: General, 2007, 324: 9-19.

[6] CHAREONPANICH M, ZHANG Z G, TOMITA A. Hydrocracking of aromatic hydrocarbons over USY-zeolite[J]. Energy & Fuels, 1996, 10(4): 927-931.

[7] 南 毅, 高子祺, 李佳鑫, 等. 催化裂化柴油加氢裂化生产轻质芳烃研究进展[J]. 工业催化, 2022, 30(1): 10-20.

[8] 范景新, 臧甲忠, 于海斌, 等. 劣质催化裂化柴油综合利用技术研究进展[J]. 工业催化, 2016, 24(2): 21-26.

[9] KOSTYNIUK A, BAJEC D, LIKOZAR B. Catalytic hydrocracking reactions of tetralin as aromatic biomass tar model compound to benzene/toluene/xylenes (BTX) over zeolites under ambient pressure conditions[J]. Journal of Industrial and Engineering Chemistry, 2021, 96: 130-143.

[10] KOSTYNIUK A, BAJEC D, LIKOZAR B. Catalytic hydrocracking reactions of tetralin biomass tar model compound to benzene, toluene and xylenes (BTX) over metal-modified ZSM-5 in ambient pressure reactor[J]. Renewable Energy, 2022, 188: 240-255.

[11] LEE J, CHOI Y, SHIN J, et al. Selective hydrocracking of tetralin for light aromatic hydrocarbons[J]. Catalysis Today, 2016, 265: 144-153.

[12] XIAN X C, RAN C, YANG P, et al. Effect of the acidity of HZSM-5/MCM-41 hierarchical zeolite on its catalytic performance in supercritical catalytic cracking of n-dodecane: experiments and mechanism[J]. Catalysis Science & Technology, 2018, 8(16): 4241-4256.

[13] NIU X J, GAO J, MIAO Q, et al. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous and Mesoporous Materials, 2014, 197: 252-261.

[14] 王恒强, 张成华, 吴宝山, 等. Ga、Zn改性方法对HZSM-5催化剂丙烯芳构化性能的影响[J]. 燃料化学学报, 2010, 38(5): 576-581.

[15] ZHANG C D, KWAK G, LEE Y J, et al. Light hydrocarbons to BTEX aromatics over Zn-modified hierarchical ZSM-5 combined with enhanced catalytic activity and stability[J]. Microporous and Mesoporous Materials, 2019, 284: 316-326.

[16] ZHANG Y W, ZHOU Y M, HUANG L, et al. Structure and catalytic properties of the Zn-modified ZSM-5 supported platinum catalyst for propane dehydrogenation[J]. Chemical Engineering Journal, 2015, 270: 352-361.

[17] JING H J, YANG F K, XIA Y M, et al. A study on the selectivity of methanol aromatization[J]. Petroleum Science and Technology, 2012, 30(16): 1737-1746.

[18] 贾艳明, 马 慧, 王俊文, 等. 金属改性HZSM-5分子筛催化甲醇制芳烃反应性能研究[J]. 天然气化工, 2019, 44(3): 7-11+26.

[19] SHEN Z B, HE P, WANG A G, et al. Conversion of naphthalene as model compound of polyaromatics to mono-aromatic hydrocarbons under the mixed hydrogen and methane atmosphere[J]. Fuel, 2019, 243: 469-477.

[20] 安志远, 朱 超, 刘熠斌, 等. Zn/HZSM-5分子筛催化棕榈油多产芳烃的研究[J]. 化工学报, 2019, 70(11): 4289-4297.

[21] 张长城. 改性β分子筛的制备及其催化1-甲基萘加氢裂化制BTX性能[D]. 北京: 中国石油大学(北京), 2020: 40-42.

[22] WU T, CHEN S L, YUAN G M, et al. High-selective-hydrogenation activity of W/Beta catalyst in hydrocracking of 1-methylnaphalene to benzene, toluene and xylene[J]. Fuel, 2018, 234: 1015-1025.

[23] 杜佳楠. 1-甲基萘高温加氢裂化制备BTX催化剂活性组分的调变[D]. 北京: 中国石油大学(北京), 2020: 40-43.

[24] LEE S U, LEE Y J, KIM J R, et al. Tactical control of Ni-loading over W-supported Beta zeolite catalyst for selective ring opening of 1-methylnaphthalene[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 279-287.

[25] 忻睦迪, 邢恩会, 欧阳颖, 等. Zn/ZSM-5中Zn的赋存状态对其催化性能的影响[J]. 石油炼制与化工, 2019, 50(12): 42-50.

[26] 吴 韬. 催化裂化轻循环油加氢裂化反应规律研究及催化剂制备[D]. 北京: 中国石油大学(北京), 2020: 48-49.

[27] CAO Z K, ZHANG X, XU C M, et al. The synthesis of Al-SBA-16 materials with a novel method and their catalytic application on hydrogenation for FCC diesel[J]. Energy & Fuels, 2017, 31(1): 805-814.

[28] LEE S U, LEE Y J, KIM J R, et al. Rational synthesis of silylated Beta zeolites and selective ring opening of 1-methylnaphthalene over the NiW-supported catalysts[J]. Applied Catalysis B: Environmental, 2017, 219: 1-9.

[29] EBRAHIMINEJAD M, KARIMZADEH R. Hydrocracking and hydrodesulfurization of diesel over zeolite beta-containing NiMo supported on activated red mud[J]. Advanced Powder Technology, 2019, 30(8): 1450-1461.

[30] DIK P P, DANILOVA I G, GOLUBEV I S, et al. Hydrocracking of vacuum gas oil over NiMo/zeolite-Al2O3: Influence of zeolite properties[J]. Fuel, 2019, 237: 178-190.

[31] SUBRAMANI T, THIMMARAYAN G, BALRAJ B, et al. Surfactants assisted synthesis of WO3 nanoparticles with improved photocatalytic and antibacterial activity: a strong impact of morphology[J]. Inorganic Chemistry Communications, 2022, 142: 109709.

[32] LIU N, DING S L, CUI Y M, et al. Optimizing activity of tungsten oxides for 1-butene metathesis by depositing silica on γ-alumina support[J]. Chemical Engineering Research and Design, 2013, 91(3): 573-580.

[33] ANGGORO D D, AMIN N A S. Methane to liquid hydrocarbons over tungsten-ZSM-5 and tungsten loaded Cu/ZSM-5 catalysts[J]. Journal of Natural Gas Chemistry, 2006, 15(4): 340-347.

[34] LIU J X, HE D H. Transformation of CO2 with glycerol to glycerol carbonate by a novel ZnWO4-ZnO catalyst[J]. Journal of CO2 Utilization, 2018, 26: 370-379.

王磊, 党辉, 张燕挺, 陈胜利. ZnW/β中ZnO含量对其催化四氢萘加氢裂化反应性能的影响[J]. 人工晶体学报, 2023, 52(2): 334. WANG Lei, DANG Hui, ZHANG Yanting, CHEN Shengli. Effect of ZnO Content in ZnW/β on Its Catalytic Performance for Tetralin Hydrocracking Reaction[J]. Journal of Synthetic Crystals, 2023, 52(2): 334.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!