压电与声光, 2023, 45 (6): 845, 网络出版: 2024-01-04  

铁电偶极子对摩擦纳米发电机输出性能的影响

作者单位
1 国网智能电网研究院有限公司, 北京102209
2 2.国网公司电力智能传感技术实验室,北京102209
3 国网北京电力科学研究院,北京100075
4 4.现场检测技术标准验证实验室,北京102209
5 国网智能电网研究院有限公司, 北京102209河北工业大学 机械工程学院,天津 300401
摘要
提出了一种利用铁电偶极子提高摩擦发电机表面电荷密度的方法。利用聚偏氟乙烯(PVDF)的铁电特性,在摩擦电层形成正电荷陷阱,增强摩擦电材料的发电性能,从而提高摩擦电纳米发电机的表面电荷密度。采用铸造工艺和单轴拉伸工艺制备了PVDF薄膜,并将其集成到具有垂直分离结构的摩擦电纳米发电机中。系统地研究了PVDF膜的埋置方向、厚度和极化强度对摩擦纳米发电机输出功率的影响。结果表明,当压电膜厚度为100 μm,最大极化电场为90 MV/m时,摩擦电纳米发电机的峰值功率提高了2.6倍。这项工作为调节摩擦电纳米发电机的性能提供了新的见解。The Influence of Ferroelectric Dipoles on the Output Performance of Triboelectric
Abstract
A method based on ferroelectric dipole to enhance surface charge density of triboelectric generator was proposed. By using the ferroelectric properties of polyvinylidene fluoride (PVDF), a positive charge trap was formed in the triboelectric layer to enhance the electric generating performance of the triboelectric material, so as to improve the surface charge density of the triboelectric nanogenerator. The PVDF film was fabricated by casting and uniaxial tensile process, and integrated into the triboelectric nanogenerator with vertical separation structure. The influences of the embedding direction, thickness and polarization intensity of the PVDF film on the output of the triboelectric nanogenerator were systematically studied. The results showed that the embedded PVDF piezoelectric film with a thickness of 100 μm and a maximum polarization electric field of 90 MV/m increased the peak power of the triboelectric nanogenerator by 2.6 times. This work has provided a new insight into regulating the properties of the triboelectric nanogenerator.
参考文献

[1] LU Shan,GAO Lingxiao,CHEN Xin,et al.Simultaneous energy harvesting and signal sensing from a single triboelectric nanogenerator for intelligent self-powered wireless sensing systems [J].Nano Energy,2020,75:104813.

[2] TIAN Jingwen,CHEN Xiangyu,WANG Zhonglin,et al.Environmental energy harvesting based on triboelectric nanogenerators[J].Nanotechnology,2020,31:242001.

[3] WU Zhiyi,ZHANG Binbin,ZOU Haiyang,et al.Multifunctional sensor based on translational-rotary triboelectric nanogenerator [J].Adv Energy Mater,2019,9:1901124.

[4] KIM S,GUPTA M K,LEE K Y,et al.Transparent flexible graphene triboelectric nanogenerators [J].Adv Mater,2014,26:3918-3925.

[5] KAUR N,PAL K.Triboelectric nanogenerators for mechanical energy harvesting [J].Energy Technol,2018,6:958-997.

[6] GUO Hengyu,YEN M H,LAI Y C,et al.All-in-one shape-adaptive self-charging power package for wearable electronics [J].ACS Nano,2016,10:10580-10588.

[7] ZHU Huarui,TANG Wei,GAO Caizhen,et al.Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind[J].Nano Energy,2015,14:193-200.

[8] FENG Yange,ZHENG Youbing,MA Shuanhong,et al.High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification[J].Nano Energy,2016,19:48-57.

[9] KIM W G,TCHO I W,KIM D,et al.Performance-enhanced triboelectric nanogenerator using the glass transition of polystyrene[J].Nano Energy,2016,27:306-312.

[10] CHOI H J,LEE J H,JUN J,et al.High-performance triboelectric nanogenerators with artificially well-tailored interlocked interfaces[J].Nano Energy,2016,27:595-601.

[11] HUANG Ji,FU Xianpeng,LIU Guoxu,et al.Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing[J].Nano Energy,2019,62:638-644.

[12] CHUN J,KIM J W,JUNG W-s,et al.Mesoporous pores impregnated with au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance under harsh environment[J].Energy Environ Sci,2015,8:3006-3012.

[13] PARK H W,HUYNH N D,KIM W,et al.Effects of embedded TiO2-x nanoparticles on triboelectric nanogenerator performance[J].Micromachines,2018,9:407.

[14] KIM J,RYU H,LEE J H,et al.High permittivity CaCu3Ti4O12 particle-induced internal polarization amplification for high performance triboelectric nanogenerators[J].Adv Energy Mater,2020,10:1903524.

[15] SHIN S H,KWON Y H,KIM Y H,et al.Triboelectric charging sequence induced by surface functionalization as a method to fabricate high performance triboelectric generators[J].ACS Nano,2015,9:4621-4627.

[16] WANG Sihong,ZI Yunlong,ZHOU Yusheng,et al.Molecular surface functionalization to enhance the power output of triboelectric nanogenerators[J].J Mater Chem A,2016,4:3728.

[17] LI Shuyao,FAN Yong,CHEN Huaqiang,et al.Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation[J].Energy Environ Sci,2020,13:896-907.

[18] LI Shuyao,NIE Jinhui,SHI Yuxiang,et al.Contributions of different functional groups to contact electrification of polymers[J].Adv Mater,2020,32:2001307.

[19] WANG Zhe,CHENG Li,ZHENG Youbin,et al.Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion[J].Nano Energy,2014,10:37-43.

[20] SHAO Jiajia,TANG Wei,JIANG Tao,et al.A multi-dielectric-layered triboelectric nanogenerator as energized by corona discharge[J].Nanoscale,2017,9:9668-9675.

[21] CHEN Baodong,TANG Wei,ZHANG Chi,et al.Au nanocomposite enhanced electret film for triboelectric nanogenerator[J].Nano Res,2018,11:3096-3105.

[22] BAI Yu,XU Liang,LIN Shiquan,et al.Charge pumping strategy for rotation and sliding type triboelectric nanogenerators[J].Adv Energy Mater,2020,10:2000605.

[23] LIN Z H,XIE Yannan,YANG Ya,et al.Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials[J].ACS Nano,2013,7:4554-4560.

[24] JIANG Tao,CHEN Xiangyu,YANG Keda,et al.Theoretical study on rotary-sliding disk triboelectric nanogenerators in contact and non-contact modes[J].Nano Res,2016,9:1057-1070.

[25] GAO Lingxiao,CHEN Xin,LU Shan,et al.Enhancing the output performance of triboelectric nanogenerator via grating-electrode enabled surface plasmon excitation [J].Adv Energy Mater,2019,9:1902725.

[26] BAI Peng,ZHU Guang,ZHOU Yusheng,et al.Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators[J].Nano Res,2014,7:990-997.

[27] KIM H S,KIM J H,KIM J.A review of piezoelectric energy harvesting based on vibration[J].Int J Precis Eng Manuf,2011,12:1129-1141.

[28] MATIKO J W,GRABHAM N J,BEEBY S P,et al.Review of the application of energy harvesting in buildings[J].Meas Sci Technol,2014,25:012002.

[29] LIU Fu,HASHIM N A,LIU Y,et al.Progress in the production and modification of PVDF membranes[J].J Membr Sci,2011,375:1-27.

[30] BHAVANASI V,KUSUMA D Y,LEE P S.Polarization orientation,piezoelectricity,and energy harvesting performance of ferroelectric PVDF-TrFE nanotubes synthesized by nanoconfinement[J].Adv Energy Mater,2014,4:1-8.

[31] WU Liangke,YUAN Weifeng,HU Ning,et al.Improved piezoelectricity of PVDF-HFP/carbon black composite films[J].J Phys D,2014,47:135303.

李春龙, 黄辉, 鞠登峰, 刘弘景, 刘可文, 高玲肖. 铁电偶极子对摩擦纳米发电机输出性能的影响[J]. 压电与声光, 2023, 45(6): 845. NanogeneratorLI Chunlong, HUANG Hui, JU Dengfeng, LIU Hongjing, LIU Kewen, GAO Lingxiao. [J]. Piezoelectrics & Acoustooptics, 2023, 45(6): 845.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!