激光生物学报, 2023, 32 (4): 0289, 网络出版: 2024-01-26  

细菌光谱检测方法与分子机制的研究进展

Progress in the Study of Bacterial Spectral Detection Methods and Molecular Mechanisms
作者单位
中国医学科学院生物医学工程研究所激光医学实验室,天津 300192
摘要
细菌是人类最常见的致病源之一,不仅严重危害人类健康和公共卫生安全,还带来了巨额的医疗支出。快速而准确的细菌检测对细菌感染的治疗具有重要的意义。光谱检测方法不但可以快速实时地获得细菌的分类、含量以及功能状态等信息,而且具有操作简单、非侵入性的优势,在细菌检测领域具有巨大的潜力。本文介绍了拉曼光谱、太赫兹光谱、可见光和近红外光光谱、荧光光谱在细菌检测方面的研究与应用,并对可见光和近红外光光谱的分子机制——光靶点,包括含有视网膜发色团的细菌视紫红质( CBCRs)、带有四吡咯发色团的拟菌植物色素、带有对香豆酸发色团的光活性黄蛋白( PYP)、带有黄素单核苷酸( FMN)的光氧压力( LOV)结构域、带有黄素腺嘌呤二核苷酸( FAD)发色团的隐色剂和含有 FAD的蓝光感应域等进行了阐述。最后,针对现有细菌光谱检测技术的优缺点提出了细菌检测技术的优化策略,希望对细菌的光谱检测研究提供帮助。
Abstract
Bacteria are one of the most common human pathogens, which not only seriously jeopardize human health and public health safety, but also bring about huge medical expenditures. Rapid and accurate bacterial detection is important for the treatment of bacterial infections. The spectral detection method can not only obtain the classification, content and functional status of bacteria promptly and in real time, but also has the advantages of simple operation and non-invasive, and has great potential in the field of bacterial detection. This paper describes the research and application of Raman spectroscopy, terahertz spectroscopy, visible and near-infrared light spectroscopy, fluorescence spectroscopy in bacterial detection, and the molecular mechanism of visible and near-infrared light spectroscopy, light targets, including bacterial retinal plasmids containing retinal chromophores, bacteriophytochromes with tetrapyrrole chromophores, photoactive proteins with p-coumarate chromophores, photo-oxidative stress structural domains with flavin-like mononucleotide chromophores, cryptochromes with flavin-adenine di-nucleotide chromophores. And blue-light sensing domains with flavin-adenine dinucleotides are described. Finally, optimization strategies for bacterial detection techniques are proposed with respect to the advantages and disadvantages of existing bacterial spectral detection techniques, hoping to provide help for the research of bacterial spectral detection.
参考文献

[1] DEUSENBERY C, WANG Y, SHUKLA A. Recent innovations in bacterial infection detection and treatment[J]. ACS Infectious Diseases, 2018, 7(4): 695-720.

[2] SCHIFF D, AVIV H, ROSENBAUM E, et al. Spectroscopic meth-od for fast and accurate group A Streptococcus bacteria detection[J]. Analytical Chemistry, 2016, 88(4): 2164-2169.

[3] WANG W, KANG S, VIKESLAND P J. Surface-enhanced raman spectroscopy of bacterial metabolites for bacterial growth monitor-ing and diagnosis of viral infection[J]. Environmental Science & Technology, 2021, 55(13): 9119-9128.

[4] WANG K, CHEN L, MA X, et al. Arcobacter identification and species determination using raman spectroscopy combined with neural networks[J]. Applied and Environmental Microbiology, 2020, 86(20): e00924-20.

[5] ESPAGNON I, OSTROVSKII D, MATHEY R, et al. Direct iden-tification of clinically relevant bacterial and yeast microcolonies and macrocolonies on solid culture media by Raman spectroscopy[J]. Journal of Biomedical Optics, 2014, 19(2): 027004.

[6] REBRO.OVá K, .ILER M, SAMEK O, et al. Rapid identifica-tion of Staphylococci by Raman spectroscopy[J]. Scientific Re-ports, 2017, 7(1): 14846.

[7] LU J, LI X, ZHANG Y, et al. Two-dimensional spectroscopy at terahertz frequencies[J]. Topics in Current Chemistry (Cham), 2018, 376(1): 6.

[8] YANG X, WEI D, YAN S, et al. Rapid and label-free detection and assessment of bacteria by terahertz time-domain spectroscopy[J]. Journal of Biophotonics, 2016, 9(10): 1050-1058.

[9] YOON SA, CHAS H, JUN S W, et al. Identifying different types of microorganisms with terahertz spectroscopy[J]. Biomedical Optics Express, 2020, 11(1): 406-416.

[10] BERRIER A, SCHAAFSMA M C, NONGLATON G, et al. Selec-tive detection of bacterial layers with terahertz plasmonic antennas[J]. Biomedical Optics Express, 2012, 3(11): 2937-2949.

[11] YANG X, YANG K, ZHAO X, et al. Terahertz spectroscopy for the isothermal detection of bacterial DNA by magnetic bead-based rolling circle amplification[J]. Analyst, 2017, 142(24): 4661-4669.

[12] MALINA T, KOEHORST R, BíNA D, et al. Superradiance of bacteriochlorophyll c aggregates in chlorosomes of green photo-synthetic bacteria[J]. Scientific Reports, 2021, 11(1): 8354.

[13] ZENG L, LIAO Z, WANG X H. Geometry effects on light-har-vesting complex’s light absorption and energy transfer in purple bacteria[J]. Photochemistry and Photobiology, 2019, 95(6): 1352-1359.

[14] SAGA Y, HIROTA K. Determination of the molar extinction coef-ficients of the B800 and B850 absorption bands in light-harvesting296激光生物学报第 32 卷complexes 2 derived from three purple photosynthetic bacteria Rhodoblastus acidophilus, Rhodobacter sphaeroides, and Pha-eospirillum molischianum by extraction of bacteriochlorophyll a[J] . Analytical Sciences: the International Journal of the Japan Society for Analytical Chemistry, 2016, 32(7): 801-804.

[15] GE M Y, LI B, WANG L, et al. Differentiation in MALDI-TOF MS and FTIR spectra between two pathovars of Xanthomonas oryzae[J] . Spectrochimica Acta A, Molecular and Biomolecular Spectroscopy, 2014, 133: 730-734.

[16] CONFORTE V, OTERO L H, TOUM L, et al. Pr-favoured variants of the bacteriophytochrome from the plant pathogen Xanthomonas campestris hint on light regulation of virulence-associated mecha-nisms[J] . The FEBS Journal, 2021, 288(20): 5986-6002.

[17] BONOMI H R, TOUM L, SYCZ G, et al. Xanthomonas camp-estris attenuates virulence by sensing light through a bacterio-phytochrome photoreceptor[J] . EMBO Reports, 2016, 17(11): 1565-1577.

[18] ABATEDAGA I, VALLE L, GOLIC A E, et al. Integration of temperature and blue-light sensing in Acinetobacter baumannii through the BlsA sensor[J] . Photochemistry and Photobiology, 2017, 93(3): 805-814.

[19] ENDRES S, WINGEN M, TORRA J, et al. An optogenetic tool-box of LOV-based photosensitizers for light-driven killing of bac-teria[J] . Scientific Reports, 2018, 8(1): 15021.

[20] BATTISTI A, MORICI P, GHETTI F, et al. Spectroscopic char-acterization and fluorescence imaging of Helicobacter pylori endogenous porphyrins[J] . Biophysical Chemistry, 2017, 229: 19-24.

[21] MORICI P, BATTISTI A, TORTORA G, et al. The in vitro photo-inactivation of Helicobacter pylori by a novel LED-based device[J] . Frontiers in Microbiology, 2020, 11: 283.

[22] CIEPLIK F, SP.TH A, LEIBL C, et al. Blue light kills Aggrega-tibacter actinomycetemcomitans due to its endogenous photosen-sitizers[J] . Clinical Oral Investigations, 2014, 18(7): 1763-1769.

[23] PLAVSKII V Y, MIKULICH A V, TRETYAKOVA A I, et al. Por-phyrins and flavins as endogenous acceptors of optical radiation of blue spectral region determining photoinactivation of microbial cells[J] . Journal of Photochemistry and Photobiology B, Biology, 2018, 183: 172-183.

[24] GUFFEY J S, WILBORN J. In vitro bactericidal effects of 405 nm and 470 nm blue light[J] . Photomedicine and Laser Surgery, 2006, 24(6): 684-688.

[25] ABATEDAGA I, PEREZ MORA B, TUTTOBENE M, et al. A characterization of BLUF-photoreceptors present in Acinetobacter nosocomialis[J] . PLoS One, 2022, 17(4): e0254291.

[26] DAVIS S J, VENER A V, VIERSTRA R D. Bacteriophytochromes: phytochrome-like photoreceptors from nonphotosynthetic eubacte-ria[J] . Science (New York, NY), 1999, 286(5449): 2517-2520.

[27] VAN DER HORST M A, KEY J, HELLINGWERF K J, et al. Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too[J] . Trends in Microbiology, 2007, 15(12): 554-562.

[28] TANAKA T, SINGH M, SHIHOYA W, et al. Structural basis for unique color tuning mechanism in heliorhodopsin[J] . Biochemi-cal and Biophysical Research Communications, 2020, 533(3): 262-267.

[29] KIM S H, CHUON K, CHO S G, et al. Color-tuning of natural variants of heliorhodopsin[J] . Scientific Reports, 2021, 11(1): 854.

[30] PURCELL E B, CROSSON S. Photoregulation in prokaryotes[J] . Current Opinion in Microbiology, 2008, 11(2): 168-178.

[31] STEPANENKO O V, STEPANENKO O V, SHPIRONOK O G, et al. Near-infrared markers based on bacterial phytochromes with phycocyanobilin as a chromophore[J] . International Journal of Molecular Sciences, 2019, 20(23): 6067.

[32] LOSI A, G.RTNER W. Bacterial bilin-and flavin-binding photo-receptors[J] . Photochemical & Photobiological Sciences, 2008, 7(10): 1168-1178.

[33] KIM S, NAKASONE Y, TAKAKADO A, et al. Wavelength-dependent photoreaction of PYP from Rhodobacter capsulatus[J] . Biochemistry, 2020, 59(51): 4810-4821.

[34] CROSSON S, RAJAGOPAL S, MOFFAT K. The LOV domain family: photoresponsive signaling modules coupled to diverse out-put domains[J] . Biochemistry, 2003, 42(1): 2-10.

[35] GONCHAROV I M, SMOLENTSEVA A, SEMENOV O, et al. High-resolution structure of a naturally red-shifted LOV domain[J] . Biochemical and Biophysical Research Communications, 2021, 567: 143-147.

[36] GOMELSKY M, KLUG G. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms[J] . Trends in Biochemical Sciences, 2002, 27(10): 497-500.

[37] FUJISAWA T, TAKEUCHI S, MASUDA S, et al. Signaling-state formation mechanism of a BLUF protein PapB from the purple bacterium Rhodopseudomonas palustris studied by femtosecond time-resolved absorption spectroscopy[J] . The Journal of Physi-cal Chemistry B, 2014, 118(51): 14761-14773.

[38] LOSI A, G.RTNER W. Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing pho-toreceptors[J] . Photochemistry and Photobiology, 2011, 87(3): 491-510.

[39] JI Y, ZHANG Q, ZHANG C, et al. A fluorescent indicator for rapid detection of bacterial contamination in milk based on FAD[J] . Journal of Dairy Science, 2019, 102(4): 3011-3021.

[40] LIU Y, ZHANG Q, LI J, et al. A label-free fluorescent sensor based on FAD for selective detection of Escherichia coli[J] . Food Chemistry, 2018, 244: 306-312.

[41] BONAH E, HUANG X, AHETO J H, et al. Application of hy-perspectral imaging as a nondestructive technique for foodborne pathogen detection and characterization[J] . Foodborne Pathogens and Disease, 2019, 16(10): 712-722.

[42] WU X, LAI T, JIANG J, et al. An on-site bacterial detection strat-egy based on broad-spectrum antibacterial ε-polylysine functional-ized magnetic nanoparticles combined with a portable fluorometer[J] . Mikrochimica Acta, 2019, 186(8): 526.

胡典, 阴慧娟. 细菌光谱检测方法与分子机制的研究进展[J]. 激光生物学报, 2023, 32(4): 0289. HU Dian, YIN Huijuan. Progress in the Study of Bacterial Spectral Detection Methods and Molecular Mechanisms[J]. Acta Laser Biology Sinica, 2023, 32(4): 0289.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!