人工晶体学报, 2023, 52 (4): 636, 网络出版: 2023-06-11  

基于氯化铯背接触处理优化硒化锑薄膜太阳电池性能

Optimization of Antimony Selenide Thin Film Solar Cells Performance Based on Cesium Chloride Back Contact Treatment
作者单位
1 常州大学材料科学与工程学院, 常州 213000
2 常州大学微电子与控制工程学院, 常州 213000
3 扬州大学, 扬州 225000
摘要
本文使用气相输运沉积的方式制备了硒化锑(Sb2Se3)薄膜太阳电池, 并采用氯化铯(CsCl2)溶液对器件上界面进行处理, 同时对薄膜和器件进行了一系列表征。研究发现, CsCl2溶液的背接触处理不仅可以提高器件的载流子收集以及降低上界面复合, 还可以优化薄膜的结晶性、表面粗糙度和光电性能。基于FTO/CdS/Sb2Se3/CsCl2/Au的器件结构, 得到了转换效率为6.32%的高效Sb2Se3薄膜太阳电池, 比基础器件效率提升了12%。本文的工作对Sb2Se3薄膜太阳电池未来的研究有一定的指导作用, 其他同类型半导体光伏器件也可借鉴。
Abstract
Antimony selenide (Sb2Se3) thin film solar cells were prepared by vapor transport deposition, and cesium chloride (CsCl2) solution was used to treat the upper interface of the device. Meanwhile, a series of characterizations of the thin film and the device were also performed. The study shows that the back contact treatment of CsCl2 solution can not only improve the carrier collection and reduce upper interface recombination of the device, but also optimize the crystallinity, surface roughness and optoelectronic performance of thin film. Based on the device structure of FTO/CdS/Sb2Se3/CsCl2/Au, a high-efficiency Sb2Se3 thin film solar cell with efficiency of 6.32% are obtained, which is 12% higher than that of the basic device. The research may provide some guidance to further development of Sb2Se3 thin film solar cells and other similar types of semiconductor photovoltaic devices.
参考文献

[1] FANG Z M, LIU L, ZHANG Z M, et al. CsPbI2.25Br0.75 solar cells with 15.9% efficiency[J]. Science Bulletin, 2019, 64(8): 507-510.

[2] DUAN Z T, LIANG X Y, FENG Y, et al. Sb2Se3 thin-film solar cells exceeding 10% power conversion efficiency enabled by injection vapor deposition technology[J]. Advanced Materials, 2022, 34(30): 2202969.

[3] WANG W, WINKLER M T, GUNAWAN O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency[J]. Advanced Energy Materials, 2014, 4(7): 1301465.

[4] YUAN C C, ZHANG L J, LIU W F, et al. Rapid thermal process to fabricate Sb2Se3 thin film for solar cell application[J]. Solar Energy, 2016, 137: 256-260.

[5] CHEN C, WANG L, GAO L, et al. 6.5% certified efficiency Sb2Se3 solar cells using PbS colloidal quantum dot film as hole-transporting layer[J]. ACS Energy Letters, 2017, 2(9): 2125-2132.

[6] LI K H, WANG S Y, CHEN C, et al. 7.5% n-i-p Sb2Se3 solar cells with CuSCN as a hole-transport layer[J]. Journal of Materials Chemistry A, 2019, 7(16): 9665-9672.

[7] CANG Q F, GUO H F, JIA X G, et al. Enhancement in the efficiency of Sb2Se3 solar cells by adding low lattice mismatch CuSbSe2 hole transport layer[J]. Solar Energy, 2020, 199: 19-25.

[8] MA Y Y, YIN Y W, LI G, et al. Aqueous solution processed MoS3 as an eco-friendly hole-transport layer for all-inorganic Sb2Se3 solar cells[J]. Chemical Communications, 2020, 56(96): 15173-15176.

[9] ZHANG J, KONDROTAS R, LU S C, et al. Alternative back contacts for Sb2Se3 solar cells[J]. Solar Energy, 2019, 182: 96-101.

[10] LIU C, SHEN K, LIN D X, et al. Back contact interfacial modification in highly-efficient all-inorganic planar n-i-p Sb2Se3 solar cells[J]. ACS Applied Materials & Interfaces, 2020, 12(34): 38397-38405.

[11] HOBSON T D C, PHILLIPS L J, HUTTER O S, et al. Isotype heterojunction solar cells using n-type Sb2Se3 thin films[J]. Chemistry of Materials, 2020, 32(6): 2621-2630.

[12] GUO L P, ZHANG B Y, QIN Y, et al. Tunable quasi-one-dimensional ribbon enhanced light absorption in Sb2 Se3 thin-film solar cells grown by close-space sublimation[J]. Solar RRL, 2018, 2(10): 1800128.

[13] JIN X, YUAN Y, JIANG C H, et al. Solution processed NiOx hole-transporting material for all-inorganic planar heterojunction Sb2S3 solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 185: 542-548.

[14] GUO H F, JIA X G, HADKE S H, et al. Highly efficient and thermally stable Sb2Se3 solar cells based on a hexagonal CdS buffer layer by environmentally friendly interface optimization[J]. Journal of Materials Chemistry C, 2020, 8(48): 17194-17201.

[15] LI Y, ZHOU Y, LUO J J, et al. The effect of sodium on antimony selenide thin film solar cells[J]. RSC Advances, 2016, 6(90): 87288-87293.

[16] SHI X Q, ZHANG F, DAI S Y, et al. Nanorod-textured Sb2(S, Se)3 bilayer with enhanced light harvesting and accelerated charge extraction for high-efficiency Sb2(S, Se)3 solar cells[J]. Chemical Engineering Journal, 2022, 437: 135341.

[17] GUO L P, VIJAYARAGHAVAN S N, DUAN X M, et al. Stable and efficient Sb2Se3 solar cells with solution-processed NiOx hole-transport layer[J]. Solar Energy, 2021, 218: 525-531.

[18] RHLE S. Tabulated values of the Shockley-Queisser limit for single junction solar cells[J]. Solar Energy, 2016, 130: 139-147.

赵聪, 郭华飞, 邱建华, 丁建宁, 袁宁一. 基于氯化铯背接触处理优化硒化锑薄膜太阳电池性能[J]. 人工晶体学报, 2023, 52(4): 636. ZHAO Cong, GUO Huafei, QIU Jianhua, DING Jianning, YUAN Ningyi. Optimization of Antimony Selenide Thin Film Solar Cells Performance Based on Cesium Chloride Back Contact Treatment[J]. Journal of Synthetic Crystals, 2023, 52(4): 636.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!