半导体光电, 2021, 42 (2): 158, 网络出版: 2021-09-03   

应用于光遗传学的集成式注入型生物光电极器件的研究进展

Research Progresses of Integrated Implanted Biological Optrode Devices Applied in Optogenetics
作者单位
中山大学 电子与信息工程学院 光电材料与技术国家重点实验室, 广州 510006
摘要
光遗传学是一门涉及神经科学、光学、半导体光电子学及生物医学的交叉科学。把光作为一种遗传学的研究工具, 可为神经科学研究提供更高效、精准的神经调控手段, 也为临床精神疾病的研究和治疗提供了新的思路。集成式注入型生物光电极是一种集刺激神经元的光源与采集生物电信号的微电极于一体的多功能生物微探针, 在利用活体生物进行的光遗传学研究中有着重要的应用。文章回顾了光遗传学的历史, 对集成式注入型生物光电极器件的分类和发展进行了分析, 详细比较了不同类型光电极器件在结构和性能上的差异, 从电学特性、噪声信号、生物兼容性及可靠性等方面进行评价。最后, 对光电极器件的未来发展进行了初步的探讨。
Abstract
Optogenetics is an interdisciplinary subject consisting of neuroscience, optics, semiconductor optoelectronics and biomedical science. Light can be used as a tool applied in genetics to provide more efficient and accurate regulation and new ideas for clinical treatments on psychiatric illnesses. The integrated implanted biological optrode is a multi-functional microprobe which integrates light stimulation and feedback signal recording, and it has important applications in optogenetic researches on living mammals. The paper first reviews the history of optogenetics. Then the development and classification of optrodes are analyzed in detail. The structure and performance of different optrodes are further compared and evaluated, such as electrical performance, noise signal, biocompatibility and reliability. Finally, the improvement and future trends of optrodes are discussed.
参考文献

[1] Zhang F, Aravanis A M, Adamantidis A, et al. Circuit breaker: optical technologies for probing neural signals and systems[J]. Nat. Rev. Neurosci., 2007, 8(8): 577-581.

[2] Banghart M, Borges K, Isacoff E, et al. Light-activated ion channels for remote control of neuronal firing[J]. Nat. Neurosci., 2004, 7(12): 1381-1386.

[3] Lewis D A. GABA ergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia[J]. Brain Research Rev., 2000, 31(2/3): 270-276.

[4] Bevan M D, Atherton J F, Baufreton J. Cellular principles underlying normal and pathological activity in the subthalamic nucleus[J]. Curr. Opin. in Neurobiol., 2006, 16(6): 621-628.

[5] Grill W M. Safety considerations for deep brain stimulation: review and analysis[J]. Expert Rev. Med. Devices, 2005, 2(4): 409-420.

[6] Aravanis A M, Wang L P, Zhang F, et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology[J]. J. Neural Eng., 2007, 4(3): 143-156.

[7] Oesterhel D, Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium[J]. Nature-New Biology, 1971, 233(39): 149-152.

[8] Crick F H.Thinking about the brain[J]. Sci. Am., 1979, 241(3): 219-232.

[9] Yizhar O, Fenno L E, Davidson T J, et al. Optogenetics in neural systems[J]. Neuron, 2011, 71(1): 9-34.

[10] Nagel G, Szellas T, Huhn W, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel[J]. Proc. Natl. Acad. Sci. USA, 2003, 100(24): 13940-13945.

[11] Boyden E S, Zhang F, Bamberg E, et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat. Neurosci., 2009, 8(9): 1263-1268.

[12] Cardin J A, Carlen M, Meletis K, et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2[J]. Nat. Protoc., 2010, 5(2): 247-252.

[13] Zhang F, Gradinaru V, Adamantidis A R, et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures[J]. Nat. Protoc., 2010, 5(3): 439-455.

[14] Royer S, Zemelman B V, Barbic M, et al. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal[J]. Eur. J. Neurosci., 2010, 31(12): 2279-2291.

[15] Adamantidis A R, Zhang F, Aravanis A M, et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons[J]. Nature, 2007, 450(7168): 420-U9.

[16] Petreanu L, Huber D, Sobczyk A, et al. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections[J]. Nature Neuroscience, 2007, 10(5): 663-668.

[17] Arrenberg A B, Stainier D Y R, Baier H, et al. Optogenetic control of cardiac function[J]. Science, 2010, 330(6006): 971-974.

[18] Papagiakoumou E, Anselmi F, Begue A, et al. Scanless two-photon excitation of Channelrhodopsin-2[J]. Nat. Methods, 2010, 7(10): 848-U117.

[19] Ayling O G S, Harrison T C, Boyd J D, et al. Automated light-based mapping of motor cortex by photoactivation of Channelrhodopsin-2 transgenic mice[J]. Nat. Methods, 2009, 6(3): 219-224.

[20] Leifer A M, Fang Y C, Gershow M, et al. Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans[J]. Nat. Methods, 2011, 8(2): 147-153.

[21] Zemelman B V, Nesnas N, Lee G A, et al. Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons[J]. Proc. Nat. Acad. Sci. USA, 2003, 100(3): 1352-1357.

[22] Ishizuka T, Kakuda M, Araki R, et al. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels[J]. Neurosci. Res., 2006, 54(2): 85-94.

[23] Campagnola L, Wang H, Zyka M J. Fiber-coupled light-emitting diode for localized photostimulation of neurons expressing Channelrhodopsin-2[J]. J. Neurosci. Methods, 2008, 169(1): 27-33.

[24] Wen L, Wang H, Tanimoto S, et al. Opto-current-clamp actuation of cortical neurons using a strategically designed Channelrhodopsin[J]. PLoS One, 2010, 5(9): e12893.

[25] Rickgauer J P, Tank D W. Two-photon excitation of Channelrhodopsin-2 at saturation[J]. Proc. Natl. Acad. Sci. USA, 2009, 106(35): 15025-15030.

[26] Zhang J, Laiwalla F, Kim J A, et al. A microelectrode array incorporating an optical waveguide device for stimulation and spatiotemporal electrical recording of neural activity[C]// IEEE Engin. in Medicine and Biology Society Conf. Proc., 2009: 2046-2049.

[27] Deisseroth K, Feng G, Majewska A K, et al. Next-generation optical technologies for illuminating genetically targeted brain circuits[J]. J. Neurosci, 2006, 26(41): 10380-10386.

[28] Anikeeva P, Andalman A S, Witten I, et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice[J]. Nat. Neurosci., 2012, 15(1): 163-U204.

[29] LeChasseur Y, Dufour S, Lavertu G, et al. A microprobe for parallel optical and electrical recordings from single neurons in vivo[J]. Nat. Methods, 2011, 8(4): 319-U63.

[30] Dufour S, Lavertu G, Dufour-Beausejour S, et al. A multimodal micro-optrode combining field and single unit recording, multispectral detection and photolabeling capabilities[J]. PLoS One, 2013, 8(2): e57703.

[31] Canales A, Jia X, Froriep U P, et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo[J]. Nat. Biotechnol., 2015, 33(3): 277-282.

[32] Rubehn B, Bosman C, Ostenveld R, et al. A MEMS-based flexible multichannel ECoG-electrode array[J]. J. of Neural Engin., 2009, 6(3): 36003.

[33] Kwon K Y, Sirowatka B, Li W, et al. Opto-μECoG array: transparent μECoG electrode array and integrated LEDs for optogenetics[C]// Proc. of Biomedical Circuits and Systems Conf., 2012: 164-167.

[34] Ji B, Guo Z, Wang M, et al. Flexible polyimide-based hybrid optoelectric neural interface with 16 channels of micro-LEDs and electrodes[J]. Microsyst. Nanoeng., 2018, 4(4): 27.

[35] Kwon K Y, Sirowatka B, Weber A, et al. Opto-mu array: a hybrid neural interface with transparent electrode array and integrated LEDs for optogenetics[J]. IEEE Trans. on Biomedical Circuits and Systems, 2013, 7(5): 593-600.

[36] Jones K E, Campbell P K, Normann R A. A glass/silicon composite intracortical electrode array[J]. Ann. Biomed. Eng., 1992, 20(4): 423-437.

[37] Lee J, Ozden I, Song Y K, et al. Transparent intracortical microprobe array for simultaneous spatiotemporal optical stimulation and multichannel electrical recording[J]. Nat. Methods, 2015, 12(12): 1157-1162.

[38] Kwon K Y, Khomenko A, Haq M, et al. Integrated slanted microneedle-LED array for optogenetics[C]// IEEE Engin. in Medicine and Biology Society Conf. Proc., 2013: 249-252.

[39] Kwon K Y, Lee H M, Ghovanloo M, et al. Design, fabrication and packaging of an integrated, wirelessly-powered optrode array for optogenetics application[J]. Front. Syst. Neurosci., 2015, 9: 69.

[40] Schwaerzle M, Elmlinger P, Paul O, et al. Miniaturized 3×3 optical fiber array for opto-genetics with integrated 460nm light sources and flexible electrical interconnection[C]// Proc. IEEE Micro Electro. Mech. Syst., 2015: 162-165.

[41] Boutte R W, Merlin S, Yona G, et al. Utah optrode array customization using stereotactic brain atlases and 3-D CAD modeling for optogenetic neocortical interrogation in small rodents and nonhuman primates[J]. Nanophotonics, 2017, 4(4): 041502.

[42] Najafi K, Wise K D, Mochizuki T. A high-yield IC-compatible multichannel recording array[J]. IEEE Trans. on Electron. Devices, 1985, 32(7): 1206-1211.

[43] Seymour J P, Wu F, et al. State-of-the-art MEMS and microsystem tools for brain research[J]. Microsyst. Nanoeng., 2017, 3: 16066.

[44] Im M, Cho I J, Wu F, et al. A dual-shank neural probe integrated with double waveguides on each shank for optogenetic applications[C]// IEEE Engineering in Medicine and Biology Society Conf. Proc., 2011: 5480-5483.

[45] Im M, Cho I J, Wu F, et al. Neural probes integrated with optical mixer/splitter waveguides and multiple stimulation sites[C]// Proc. IEEE Micro. Electro. Mech. Syst., 2011: 1051-1054.

[46] Wu F, Stark E, Im M, et al. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications[J]. J. of Neural Engin., 2013, 10(5): 056012.

[47] Schwaerzle M, Seidl K, Schwarz U T, et al. Ultracompact optrode with integrated laser diode chips and SU-8 waveguides for optogenetic applications[C]// Proc. IEEE Micro Electro. Mech. Syst., 2013: 1029-1032.

[48] Cao H, Gu L, Mohanty S K, et al. An integrated μLED optrode for optogenetic stimulation and electrical recording[J]. IEEE Trans. Biomed. Engin., 2013, 60(1): 225-229.

[49] Kim K, English D, McKenzie S, et al. GaN-on-Si μLED optoelectrodes for high-spatiotemporal accuracy optogenetics in freely behaving animals[C]// IEEE Int. Electron. Devices Meet., 2016: 1-4.

[50] Wu F, Stark E, Ku P C, et al. Monolithically integrated mLEDs on silicon neural probes for high-resolution optogenetic studies in behaving animals[J]. Neuron, 2015, 88(6): 1136-1148.

[51] Rui Y F, Liu J Q, Yang B, et al. Parylene-based implantable platinum-black coated wire microelectrode for orbicularis oculi muscle electrical stimulation[J]. Biomed Microdevices, 2011, 14(2): 367-373.

[52] Zhong C, Ke D, Wang L, et al. Bioactive interpenetrating polymer networks for improving the electrode/neural-tissue interface[J]. Electrochem. Commun., 2017, 79: 59-62.

[53] Ludwig K A, Uram J D, Yang J, et al. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4 ethylenedioxythiophene) (PEDOT) film[J]. J. of Neural Engin., 2006, 3(1): 59-70.

[54] Weiland J D, Anderson D J, Humayun M S. In vitro electrical properties for iridium oxide versus titanium nitride stimulating electrodes[J]. IEEE Trans. Biomed. Eng., 2002, 49(12): 1574-1579.

[55] Du J, Roukes M L, Masmanidis S C. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates[J]. J. Micromech. Microeng., 2009, 19(7): 075008.

[56] Wang M, Ji B, Gu X, et al. Direct electrodeposition of graphene enhanced conductive polymer on microelectrode for biosensing application[J]. Biosens. Bioelectron., 2018, 99: 99-107.

[57] Wang L, Wang M, Ge C, et al. The use of a double-layer platinum black-conducting polymer coating for improvement of neural recording and mitigation of photoelectric artifact[J]. Biosens. Bioelectron., 2019, 145: 111661.

[58] Liu X, Lu Y, Iseri E, et al. A compact closed-loop optogenetics system based on artifact-free transparent graphene electrodes[J]. Front. Neurosci., 2018, 12: 132.

[59] Khurram A, Seymour J P. Investigation of the photoelectrochemical effect in optoelectrodes and potential uses for implantable electrode characterization[C]// IEEE Engin. in Medicine and Biology Society Conf. Proc., 2013: 3032-3025.

[60] Kozai T D Y, Vazquez A L. Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: new challenges and opportunities[J]. J. Mater. Chem. B, 2015, 3(25): 4965-4978.

[61] Guo Z, Ji B, Wang M, et al. A polyimide-based flexible optoelectrodes for low-noise neural recording[J]. IEEE Electron. Device Lett., 2019, 40(7): 1190-1193.

[62] Kampasi K, English D F, Seymour J, et al. Dual color optogenetic control of neural populations using low-noise, multishank optoelectrodes[J]. Microsyst. Nanoeng., 2018, 4(2): 10.

[63] Kim T, McCall J G, Jung Y H, et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics[J]. Science, 2013, 340(6219): 211-216.

[64] Fan B, Kwon K Y, Rechenberg R, et al. A polycrystalline diamond-based, hybrid neural interfacing probe for optogenetics[C]// Proc. IEEE Micro Electro Mech. Syst., 2015: 616-619.

沈俊宇, 张佰君. 应用于光遗传学的集成式注入型生物光电极器件的研究进展[J]. 半导体光电, 2021, 42(2): 158. SHEN Junyu, ZHANG Baijun. Research Progresses of Integrated Implanted Biological Optrode Devices Applied in Optogenetics[J]. Semiconductor Optoelectronics, 2021, 42(2): 158.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!