硅酸盐通报, 2023, 42 (11): 4131, 网络出版: 2023-12-11  

红外梯度折射率GeS2-In2S3-CsCl硫系微晶玻璃制备与性能研究

Fabrication and Properties of Infrared Gradient Refractive Index GeS2-In2S3-CsCl Chalcogenide Glass-Ceramics
作者单位
1 宁波大学高等技术研究院, 宁波 315211
2 浙江省光电探测材料及器件重点实验室, 宁波 315211
摘要
梯度折射率红外成像系统可在保持成像性能的基础上, 极大降低系统的尺寸、质量和成本, 有望推进红外成像系统向轻小型发展。然而, 目前没有可用的红外梯度折射率光学材料。本文基于65GeS2-25In2S3-10CsCl硫系玻璃, 利用梯度温度场热诱导析出轴向梯度分布的β-In2S3纳米晶体, 制得梯度折射率透明硫系微晶玻璃。结果表明: 析出的β-In2S3晶体为不同晶面取向纳米晶组成的多晶结构, 尺寸约为25 nm, 且晶体尺寸、数量与梯度温度场密切相关; 制得的梯度折射率硫系微晶玻璃仍保持良好的长波红外透过率, 且其10 μm处最大折射率差Δn达0.047。
Abstract
Gradient refractive index infrared imaging system can greatly reduce the sizeweight and cost of system while maintaining imaging performancewhich is expected to advance the development of infrared imaging system towards lightweight and compactness. Howevercurrently available infrared gradient refractive index optical materials are not accessible. Based on 65GeS2-25In2S3-10CsCl chalcogenide glassa gradient temperature field was used to thermally induce the precipitation of axially gradient-distributed β-In2S3 nanocrystals to produce a gradient refractive index transparent chalcogenide glass-ceramics. The results show that the precipitated β-In2S3 crystals are polycrystalline structures composed of nanocrystals with different crystallographic orientationswith a size of about 25 nmand the size and number of crystals are closely related to gradient temperature field. The gradient refractive index chalcogenide glass-ceramics still maintain good transmission in long-wave infraredand their maximum refractive index difference Δn reaches 0.047 at 10 μm.
参考文献

[1] BALARAS C AARGIRIOU A A. Infrared thermography for building diagnostics[J]. Energy and Buildings200234(2): 171-183.

[2] CAMPBELL S DBROCKER D ENAGAR Jet al. SWaP reduction regimes in achromatic GRIN singlets[J]. Applied Optics201655(13): 3594-3598.

[3] MAMBOU SMARESOVA PKREJCAR Oet al. Breast cancer detection using infrared thermal imaging and a deep learning model[J]. Sensors201818(9): 2799.

[4] RING E JAMMER K. Infrared thermal imaging in medicine[J]. Physiological Measurement201233(3): R33-R46.

[5] TEICHMAN JHOLZER JBALKO Bet al. Gradient index optics at DARPA [J]. Institute For Defense Analyses Alexandria Va2013.

[6] CHOI J HCHA D HKIM J Het al. Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses[J]. Journal of Materials Research201631(12): 1674-1680.

[7] GIBSON DBAYYA SNGUYEN Vet al. IR GRIN optics: design and fabrication[C]//SPIE Defense and Security. Proc SPIE 10181Advanced Optics for Defense Applications: UV Through LWIR IIAnaheimCAUSA. 201710181: 60-68.

[8] FOURMENTIN CZHANG X HLAVANANT Eet al. IR GRIN lenses prepared by ionic exchange in chalcohalide glasses[J]. Scientific Reports202111: 11081.

[9] KANG MSISKEN LCOOK Jet al. Refractive index patterning of infrared glass ceramics through laser-induced vitrification[J]. Optical Materials Express20188(9): 2722.

[10] RICHARDSON K AKANG MSISKEN Let al. Advances in infrared gradient refractive index (GRIN) materials: a review[J]. Optical Engineering202059(11): 112602.

[11] SISKEN LSMITH CBUFF Aet al. Evidence of spatially selective refractive index modification in 15GeSe2-45As2Se3-40PbSe glass ceramic through correlation of structure and optical property measurements for GRIN applications[J]. Optical Materials Express20177(9): 3077.

[12] KANG MSISKEN LLONERGAN Cet al. Monolithic chalcogenide optical nanocomposites enable infrared system innovation: gradient refractive index optics[J]. Advanced Optical Materials20208(10): 2000150.

[13] SISKEN LKANG MVERAS J Met al. Infrared glass-ceramics with multidispersion and gradient refractive index attributes[J]. Advanced Functional Materials201929(35): 1902217.

[14] LI C KLIU H JZHOU G Jet al. Infrared GRIN GeS2-Sb2S3-CsCl chalcogenide glass-ceramics[J]. Journal of the American Ceramic Society2022105(10): 6007-6012.

[15] LAVANANT ECALVEZ LCHEVIR Fet al. Radial gradient refractive index (GRIN) infrared lens based on spatially resolved crystallization of chalcogenide glass[J]. Optical Materials Express202010(4): 860.

[16] LI Z BLIN C GNIE Q Het al. Controlled crystallization of β-In2S3 in 65GeS2·25In2S3·10CsCl chalcohalide glass[J]. Applied Physics A2013112(4): 939-946.

[17] CALVEZ L. Transparent chalcogenide glass-ceramics[M]//Chalcogenide Glasses. Amsterdam: Elsevier2014: 310-343.

[18] YE Q LWENG K BGUAN S Set al. Unveiling crystallization mechanism for controlling nanocrystalline structure in glasses[J]. Journal of the European Ceramic Society202040(5): 2173-2178.

[19] XIANG W DZHAO H JZHONG J Set al. Synthesis and third-order optical nonlinearities of In2S3 quantum dots glass[J]. Journal of Alloys and Compounds2013553: 135-141.

[20] SHIRYAEV VCHURBANOV M. Preparation of high-purity chalcogenide glasses[M]//Chalcogenide Glasses. Russian: Elsevier2014: 3-35.

刘虹君, 李成康, 周港杰, 陈津津, 林常规. 红外梯度折射率GeS2-In2S3-CsCl硫系微晶玻璃制备与性能研究[J]. 硅酸盐通报, 2023, 42(11): 4131. LIU Hongjun, LI Chengkang, ZHOU Gangjie, CHEN Jinjin, LIN Changgui. Fabrication and Properties of Infrared Gradient Refractive Index GeS2-In2S3-CsCl Chalcogenide Glass-Ceramics[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(11): 4131.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!