强激光与粒子束, 2014, 26 (10): 101009, 网络出版: 2014-12-08  

高功率光纤激光器全内反射型大模场光子晶体光纤设计

Design of large mode area total internal reflection photonic crystal fiber for high power fiber laser
作者单位
1 中国工程物理研究院 激光聚变研究中心 等离子体物理实验室, 四川 绵阳 621900
2 中国工程物理研究院 研究生部, 北京 100088
3 四川大学 电子信息学院, 成都 610064
摘要
在高功率密度下产生的非线性效应和材料损伤等问题限制了光纤激光器输出功率的进一步提高。利用大模场光纤降低光纤能量密度,提高非线性阈值是一种最为直接和有效的手段。以空气孔尺寸为光波长量级的全内反射型光子晶体光纤为对象,采用等效折射率模型分析了光子晶体光纤的单模特性,利用有限元法分析了结构参数对光子晶体光纤的模场面积和色散等光束质量参数的影响。设计了一种工作波长为0.40~1.55 μm,模场面积为112.74~258.87 μm2,且在1.27 μm附近可补偿色散的大模场光子晶体光纤。该研究可为高功率光纤激光器大模场光纤的进一步参数优化设计及元件加工提供重要参考。
Abstract
The nonlinear effect and material damage existing in high power fiber lasers restrict their output power. A large mode area fiber, which could reduce the power density and improve the nonlinear threshold, is one of the solutions to the problem. A photonic crystal fiber with air holes at wavelength scales was designed based on the effective index model and finite element analysis. The single-mode properties as well as the influence of structural parameters on the mode area and dispersion were investigated. Considering practical applications, we designed a large mode area photonic crystal fiber, operating in the range of 0.40~1.55 μm, mode area between 112.74~258.87 μm2, centering at 1.27 μm with dispersion compensation ability. Our investigations may provide new references to the optimization and fabrication of large mode area fiber for high power fiber lasers.
参考文献

[1] 杨祥林. 光纤通信系统[M]. 北京: 国防工业出版, 2009. (Yang Xianglin. Fiber optical communication system. Beijing: National Defense Industry Press, 2009)

[2] Li Libao, Lou Qihong, Zhou Jun, et al. Transverse-mode controlling of a large-mode-area multimode fiber laser[J]. Chinese Optics Letters, 2007, 5(9): 524-526.

[3] Filippov V, Chamorovskii Y, Kerttula J, et al. 600 W power scalable single transverse mode tapered double-clad fiber laser[J]. Optics Express, 2009, 17(3): 1203-1214.

[4] 王海林, 黄蔚村, 洪新华. 1550 nm单模锥形光纤模场的演化特性[J]. 强激光与粒子束, 2012, 24(5): 1052-1056. (Wang Hailin, Huang Weicun, Hong Xinhua. Mode field evolution in 1550 nm single-mode tapered fiber. High Power Laser and Particle Beams, 2012, 24(5): 1052-1056)

[5] Limpert J, Zellmer H, Tünnermann A, et al. Suppression of higher order modes in a multimode fiber amplifier using efficient gain-loss-management (GLM)[C]//Advanced Solid-State Lasers. 2002, 68: MB20.

[6] Siegman A E. Propagating modes in gain-guided optical fibers[J]. Journal of the Optical Society of America A-Optics, Image Science & Vision, 2003, 20(8):1617-1628.

[7] Liu C H, Chang Guoqing, Litchinister N, et al. Chirally coupled core fibers at 1550 nm and 1064 nm for effectively single-mode core size scaling[C]//Conference on Lasers and Electro-Optics. 2007: CTuBB3.

[8] Ramachandran S, Nicholson J W, Ghalmi S, et al. Light propagation with ultralarge modal areas in optical fibers[J]. Optics Letters, 2006, 31(12): 1797-1799.

[9] 张红, 杨春平, 李伟, 等. 高功率全光纤激光器特性[J]. 强激光与粒子束, 2012, 24(6): 1287-1289.(Zhang Hong, Yang Chunping, Li Wei, et al. Characteristics of high-power all-fiber laser. High Power Laser and Particle Beams, 2012, 24(6): 1287-1289)

[10] 王小林, 周朴, 肖虎, 等. 窄线宽全光纤激光器实现666 W高功率输出[J]. 强激光与粒子束, 2012, 24(6): 1261-1262. (Wang Xiaolin, Zhou Pu, Xiao Hu, et al. Narrow line width all-fiber laser with 666 W power output. High Power Laser and Particle Beams, 2012, 24(6): 1261-1262)

[11] 张利明, 周寿桓, 赵鸿, 等. kW级主振荡功率放大光纤激光器输出特性[J]. 强激光与粒子束, 2013, 25(8): 1893-1894. (Zhang Liming, Zhou Shouhuan, Zhao Hong, et al. Output characteristics of kW master-oscillator power amplifier fiber laser. High Power Laser and Particle Beams, 2013, 25(8): 1893-1894)

[12] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.

[13] Bjarklev A, Broeng J, Barkou Libori S E, et al. Photonic crystal fiber modelling and applications[C]//Optical Fiber Communication Conference and Exhibit. 2001, 2: TuC1.

[14] Knight J C, Birks T A, Cregan R F, et al. Large mode area photonic crystal fibre[J]. Electronics Letters, 1998, 34(13): 1347-1348.

[15] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber[J]. Optics Letters, 1997, 22(13): 961-963.

[16] Saitoh K, Koshiba M. Empirical relations for simple design of photonic crystal fibers[J]. Optics Express, 2005, 13(1): 267-274.

[17] Saitoh K, Koshiba M. Numerical modeling of photonic crystal fibers[J]. Journal of Lightwave Technology, 2005, 23(11): 3580-3590.

[18] Courant R. Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of the American Mathematical Society, 1943, 49(1): 1-23.

[19] Brechet F, Marcou J, Pagnoux D, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method[J]. Optical Fiber Technology, 2000, 6(2): 181-191.

[20] Russell P S J. Photonic-crystal fibers[J]. Journal of Lightwave Technology, 2006, 24(12): 4729-4749.

[21] Saiton K, Koshiba M, Hasegawaet T, et al. Chromatic dispersion control in photonic crystal fiber: application to ultra-flattened dispersion[J]. Optical Express, 2003, 11(8): 843-852.

刘骁, 陈建国, 韩敬华, 张彬, 崔旭东. 高功率光纤激光器全内反射型大模场光子晶体光纤设计[J]. 强激光与粒子束, 2014, 26(10): 101009. Liu Xiao, Chen Jianguo, Han Jinghua, Zhang Bin, Cui Xudong. Design of large mode area total internal reflection photonic crystal fiber for high power fiber laser[J]. High Power Laser and Particle Beams, 2014, 26(10): 101009.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!