光学学报, 2024, 44 (4): 0416001, 网络出版: 2024-02-29  

Rb掺杂对K-Cs-Sb阴极材料光电性质的影响

Effect of Rb Doping on Photoelectric Properties of K-Cs-Sb Cathode Material
作者单位
1 南京理工大学电子工程与光电技术学院,江苏 南京 210094
2 北方夜视技术股份有限公司,江苏 南京 211106
摘要
通过掺杂Rb有助于改善碱锑化合物光电阴极的光谱响应并降低热发射。为了从理论上研究K-Cs-Sb光电阴极材料中掺Rb的作用机理,采用基于密度泛函理论的第一性原理方法,分别建立了K2CsSb、K2Cs0.75Rb0.25Sb、K2Cs0.5Rb0.5Sb、K2Cs0.25Rb0.75Sb、K2RbSb 5种不同Cs/Rb比例(原子数分数之比)的K-Cs-Rb-Sb体模型以及相应的(111)表面模型,计算了其电子结构与光学性质。计算结果表明,对于不同Cs/Rb比例的K-Cs-Rb-Sb体模型,Rb掺杂对其光学性质的影响甚微。随着Rb/Cs比例的增加,体模型的形成能和形成焓以及表面模型的表面能变低,说明K-Cs-Rb-Sb化合物容易形成且稳定。此外,与传统的K2CsSb相比,K2Cs0.25Rb0.75Sb的功函数更大,电导率更大,同时又具有最小的禁带宽度和离化能,因此,Cs/Rb比例为1∶3的K-Cs-Rb-Sb阴极适合作为量子效率高、暗电流低且导电性好的光电发射材料。
Abstract
Objective

Alkali antimonide photocathodes are widely used in many fields such as radiation detection, photon counting, and accelerator electron source due to their advantages of high quantum efficiency, long lifespan, short response time, and low preparation cost. Since K2CsSb bi-alkali photocathode has high photosensitivity ranging from 300 nm to 650 nm, it is often used as the key component of large-area microchannel plate photomultiplier tube and dynode photomultiplier tube. K-Cs-Rb-Sb tri-alkali photocathodes may exhibit more outstanding performance in spectral response enhancement and thermionic emission suppression compared to conventional K2CsSb bi-alkali photocathode. So far, there have been little theoretical researches on K-Cs-Rb-Sb tri-alkali photocathodes. Due to the difficulty in controlling the stoichiometric ratio of alkali metal elements during the actual preparation processes of K-Cs-Rb-Sb photocathodes, and in fact K-Cs-Rb-Sb tri-alkali photocathodes with different stoichiometric ratios have different photoemission properties, it is necessary to analyze the mechanism of Rb doping leading to different photocathode properties from the atomic and electronic perspective, thereby providing theoretical guidance for designing excellent alkali antimonide photocathodes.

Methods

The K2Cs2-xRbxSb bulk models and the (111)-oriented surface models with different Cs/Rb ratios corresponding to K2CsSb,K2Cs0.75Rb0.25Sb,K2Cs0.5Rb0.5Sb,K2Cs0.25Rb0.75Sb,and K2RbSb were established. The K2CsSb unit cell belongs to the DO3 cubic structure with a lattice constant of 0.8615 nm, and the space group is Fm-3m. According to the number of Cs atoms in K2CsSb replaced by Rb atoms, the lattice constants of several K-Cs-Rb-Sb bulk models after atom replacements were obtained by Vegard law. On the basis of the K2CsSb (111) Cs-terminated surface, six, eight, twelve, and sixteen Cs atoms were replaced from top to bottom, to obtain the K-Cs-Rb-Sb(111) surface models with different Cs/Rb ratios. To eliminate inter-layer interactions caused by the periodic mirror interaction between the surface slabs, a vacuum layer of 2 nm was set along the z-axis, including an upper vacuum layer with a thickness of 1.5 nm and a lower vacuum layer with a thickness of 0.5 nm. During the structural optimization process, the upper surface atoms with a thickness of 0.8 nm were allowed to fully relax, while the remaining atoms were constrained. The VASP software package using the first-principles calculation method based on the density functional theory was adopted. The projected augmented wave method was used as the pseudo potential, the generalized gradient approximation function proposed by Perdew-Burke-Ernzerhof was used to express the exchange correlation interaction, the plane wave expansion with a cut-off energy of 500 eV was used, and the conjugate gradient method was used to optimize the lattice constants and atom positions of the diverse models. The K-point grid in the Monkhorst-Pack form was set as 6×6×6 for bulk models and 6×6×1 for surface models, respectively.

Results and Discussions

The calculation results indicate that when Rb atoms replace Cs atoms in the K-Cs-Rb-Sb bulk models with different Cs/Rb ratios, the optical properties including reflectivity, refractive index, extinction coefficient, and absorption coefficient are hardly affected by Rb doping. This implies that the incorporation of Rb atoms has minimal impact on the optical properties of K2CsSb material. From the perspective of formation energy and formation enthalpy, all the K-Cs-Rb-Sb bulk models where Rb atoms replace K atoms have positive formation energies, and the corresponding formation enthalpies are larger than that of the K2CsSb model. This indicates that it is very difficult for K atoms to be replaced by Rb atoms in the preparation process of K-Cs-Rb-Sb tri-alkali photocathodes. At the same time, all K-Cs-Rb-Sb bulk models where Rb atoms replace Cs atoms have negative formation energies, and the corresponding formation enthalpies are less than that of the K2CsSb model, indicating that all the models where Rb atoms replace Cs atoms are easy to form with better thermodynamic stability. As the number of Rb atoms replacing Cs atoms increases, the formation energies and formation enthalpies gradually decrease. This means that in the presence of both Cs and Rb, the K2Cs0.25Rb0.75Sb model is the easiest to form and the most stable. All K-Cs-Rb-Sb bulk models exhibit the property of p-type semiconductor, and K2Cs0.25Rb0.75Sb has the smallest bandgap. For K-Cs-Rb-Sb surface models with different Cs/Rb ratios, the vacuum levels, surface energies, and electron effective masses gradually decrease. Among them, the K2Cs0.25Rb0.75Sb surface model has the smallest ionization energy, indicating that its electrons generated under external light excitation are more likely to transit from the valence band top to the conduction band bottom and move in the conduction band. This is beneficial for enhancing the spectral response of the photocathode and further improving the photoelectric conversion efficiency. Doping Rb element in K2CsSb can increase the work function of the surface model. On the whole, the K2CsRb0.250.75Sb (111) with a larger work function and surface can prevent the escape of some hot electrons while ensuring that a large number of photoelectrons can escape from the surface, in order to achieve the reduction of cathode dark current without reducing its quantum efficiency. In the surface model containing K, Cs, and Rb alkali metals, K2Cs0.25Rb0.75Sb has the highest conductivity, because the concentration of conduction band electrons gradually increases, and the effective mass of conduction band electrons in the surface model decreases as the number of Cs atoms replaced by Rb atoms increases.

Conclusions

When Rb atoms replace Cs atoms, Rb doping has little effect on the optical properties of K-Cs-Rb-Sb cathode materials. For K-Cs-Rb-Sb bulk models with different Cs/Rb ratios, K2Cs0.25Rb0.75Sb has the lower formation energy and formation enthalpy, indicating that it is easy to form under natural conditions and it is thermodynamically stable. For the surface models, K2Cs0.25Rb0.75Sb has the smaller surface energy and higher conductivity, as well as the smallest bandgap and ionization energy. Besides, the work function of K2Cs0.25Rb0.75Sb is larger than that of K2CsSb. Therefore, the K-Cs-Rb-Sb cathode with a Cs/Rb ratio (atomic number fraction) of 1∶3 is considered to be a stable photoemission material with high quantum efficiency, low dark current, and good conductivity. The research results can provide guidance for the preparation of high-performance K-Cs-Rb-Sb photocathodes. In the traditional K2CsSb photocathode preparation process, doping Rb elements can reduce the dark noise of the photomultiplier tube while maintaining a high level of quantum efficiency, thereby improving the detection sensitivity and accuracy of the device in practical applications.

1 引言

光电阴极是光电发射器件中完成光电转换的核心部件。碱锑化合物K-Cs-Sb光电阴极具有量子效率高、寿命长、响应时间短且制备成本低等优势1,被广泛应用于辐射探测、光子计数和加速器电子源等领域2-6。传统的K-Cs-Sb光电阴极制备工艺较为简单:在真空环境下将Sb先蒸发在衬底上,随后依次引入或交替引入K、Cs与Sb反应,监测阴极光电流到达峰值7-9。研究者发现:相比于K-Cs-Sb光电阴极,掺Rb的K-Cs-Rb-Sb光电阴极在光谱响应提升和本征发射抑制方面更为突出10。典型的K-Cs-Rb-Sb光电阴极的制备工艺如下:首先在常温下蒸一层Sb,随后在180~200 ℃温度下蒸K;沉积第二层Sb,随后在180~200 ℃温度下蒸Rb;沉积第三层Sb,随后在160 ℃温度下蒸Cs;最后在室温下进行表面氧敏化,使灵敏度达到最高值11。此外,Cultrera等10采取不同工艺在蒸Rb的过程中待光电流不再增加时直接蒸Cs,制备的K-Cs-Rb-Sb阴极在可见光的量子效率得到明显提升,光谱响应向红外波段延伸。高鲁山等12以Na2KSb为基底层,然后用Cs、Rb、Sb进行表面处理,制备出具有高灵敏度、低热发射的四碱光电阴极[Rb,Cs]Na2KSb,其绿光到红光的光谱响应得到了明显改善;王宝林等13在此基础上提出了[Rb,Cs]Na2KSb光电阴极的表面能带结构模型,对实验结果进行了解释。

在K-Cs-Sb阴极材料理论研究方面,Ettema等14采用定域球面波方法对K2CsSb和KCs2Sb的电子结构进行了研究。Kalarasse等15-16采用全势线性化增强平面波法研究了不同K/Cs比例(原子数分数之比)的K-Cs-Sb化合物的电学和光学性质。舒昭鑫等17研究了不同反位、空位缺陷对K-Cs-Sb光电性质的影响。Wang等18研究了不同晶面和不同原子终止面的K2CsSb阴极的表面性质。Murtaza等19计算了不同双碱锑化物(Na2KSb、Na2RbSb、Na2CsSb、K2RbSb、K2CsSb和Rb2CsSb)的结构、电学和光学性质。然而,到目前为止,关于K-Cs-Rb-Sb阴极材料性质以及掺Rb的作用机理的理论研究还未见报道。在阴极制备过程中,碱金属元素的化学计量比难以控制,不同元素比例的光电阴极存在光电发射性能差异,因此有必要从原子电子层面研究元素化学计量比对K-Cs-Rb-Sb阴极性质的影响,以为研制更高性能的碱锑化合物阴极提供理论指导。

本文基于密度泛函理论(DFT)的第一性原理方法20,采用VASP量子力学-分子动力学模拟软件包计算分析不同Cs/Rb比例下K-Cs-Rb-Sb体模型以及(111)表面模型的性质,得出Cs/Rb比例对电子结构和光学性质的影响规律,探索出最适合光电发射的K-Cs-Rb-Sb阴极材料。

2 理论模型与计算方法

为了研究不同Cs/Rb比例的K-Cs-Rb-Sb光电阴极材料性质,本文建立了K2Cs2-xRbxSb(x分别取0、0.25、0.5、0.75、1)的体模型以及与之相对应的(111)表面模型。K2CsSb晶胞属于晶格常数为0.8615 nm的DO3立方结构17,所属空间群为Fm-3m21。用Rb原子替换K2CsSb中的Cs原子,根据Vegard定律计算出K2Cs2-xRbxSb的晶格常数22,其表示式为

aK2Cs1-xRbxSb=(1-x)aK2CsSb+xaK2RbSb

式中:a表示晶胞的晶格常数;x表示Rb在Cs、Rb总原子数中的占比;aK2CsSb=0.8615 nm;aK2RbSb=0.865 nm。计算所得K2Cs0.75Rb0.25Sb、K2Cs0.5Rb0.5Sb、K2Cs0.25Rb0.75Sb、K2RbSb的晶格常数分别为0.8624 nm、0.8632 nm、0.8641 nm、0.8500 nm。晶胞结构中共16个原子,Cs、Rb原子位于每条棱的中点以及体心位置,K原子占据体对角线的1/4处,Sb原子则处在每个面的面心和顶角,如图1(a)~(e)所示。

图 1. 不同Cs/Rb比例的K-Cs-Rb-Sb体模型和表面模型

Fig. 1. K-Cs-Rb-Sb bulk and surface models with different Cs/Rb ratios

下载图片 查看所有图片

K2CsSb光电阴极的(111)表面模型存在各种类型的周期性排列,如K/Cs/K/Sb、Cs/K/Sb/K、K/Sb/K/Cs和Sb/K/Cs/K。Wang等18在研究不同晶面K2CsSb模型性质中证明了富Cs的(111)表面具有最小的功函数,最利于光电发射,因此本文以富Cs的K2CsSb(111)表面为研究对象,从上至下分别替换4、8、12、16个Cs原子,得到不同Cs/Rb比例的K-Cs-Rb-Sb(111)表面模型,如图1(f)~(j)所示。为消除表面模型因周期性结构而产生的层间相互作用,在z轴上设置2 nm的真空距离,包括1.5 nm厚的上真空层以及0.5 nm厚的下真空层。在K-Cs-Rb-Sb表面模型结构优化过程中,允许厚度为0.8 nm的上层表面原子完全松弛,而其余原子受到约束。

本文计算使用VASP软件包中的投影缀加波(PAW)作为赝势,采用基于Perdew-Burke-Ernzerhof(PBE)函数的广义梯度近似法(GGA)分析电子交换-关联作用。平面波展开的截断能为500 eV,高斯展宽为0.05 eV,采用共轭梯度法来优化模型的晶格常数和原子位置。总能量收敛标准为1×10-6 eV,原子间的相互作用受力小于0.01 eV/Å。对于体模型,用于布里渊区采样的Monkhorst-Pack形式的K点网格是6×6×6;而对于表面模型,这些网格被设定为6×6×1,所有的计算均在倒空间里进行。参与计算的赝势原子的元素价电子态为K:3s23p64s1、Rb:4s24p65s1、Cs:5s25p66s1和Sb:5s25p3[17

3 结果与讨论

3.1 K-Cs-Rb-Sb体模型性质分析

在K2CsSb结构中掺Rb,形成K-Cs-Rb-Sb四元化合物结构的难易程度可以用形成能表示,其计算公式17如下:

ΔE=EK2Cs2-xRbxSb-EK2CsSb+4xμCs-4xμRb

式中:ΔE表示K2Cs2-xRbxSb的形成能;EK2Cs2-xRbxSb表示该结构的总能量;EK2CsSb表示K2CsSb的总能量;μRbμCs表示Rb和Cs的单原子化学势,通过计算得到μRb=-0.132 eV、μCs=-0.157 eV。形成能为正值表示该物质的形成需要吸收热量,该物质在自然条件下不容易形成;形成能为负值时则表示该物质在形成过程中放出热量,该物质可以自发形成且容易形成,且负值绝对值越大表示该物质越容易形成。

形成焓可以表示物质形成的热力学稳定性,其值越小表示物质在热力学上越稳定。对于不同组成的K2Cs2-xRbxSb体模型,其形成焓ΔH17可以表示为

ΔH=EK2Cs2-xRbxSb-8EK-4(2-x)ECs-4xERb-4ESb16

式中:EK2Cs2-xRbxSb表示K2Cs2-xRbxSb结构的总能量;EK、ECs、ERb、ESb分别表示K原子、Cs原子、Rb原子、Sb原子的单点能。

图2给出了包括上述5种结构在内的Rb分别替换Cs原子、K原子时的形成能和形成焓。可以明显看出,当用Rb原子替换K原子时,其形成能均为正数,且形成焓都大于K2CsSb的形成焓,这说明用Rb原子替换K2CsSb中K原子的难度很大。只有本文讨论的Rb替换Cs的4种结构的形成能为负数,且形成焓都小于K2CsSb的形成焓,说明这些化合物容易形成且在热力学上更稳定,因此在阴极激活工艺中用Rb替换Cs形成K2Cs2-xRbxSb化合物是可行的。对于存在K、Cs、Rb三种碱金属元素的化合物,K2Cs0.25Rb0.75Sb的形成焓、形成能都最小,这意味着在Cs、Rb同时存在的情况下,该物质最容易形成且最稳定,因此可以推断,在实际K-Cs-Rb-Sb光电阴极制备过程中,K2Cs0.25Rb0.75Sb化合物是最有可能形成的。

图 2. 不同Cs/Rb比例K-Cs-Rb-Sb体模型的形成能和形成焓

Fig. 2. Formation energy and formation enthalpy of K-Cs-Rb-Sb bulk models with different Cs/Rb ratios

下载图片 查看所有图片

光学性质作为K-Cs-Rb-Sb材料在光电阴极应用中的重要性质,包括反射率、折射率、消光系数和吸收系数,它们由介电常数推导得到,介电常数由实部ε1和虚部ε2组成,表达式为ε=ε1+iε223。对于光电阴极而言,高反射率会导致来自外部的光被反射回去,这降低了入射光被阴极吸收的概率;折射率影响光在通过界面时的传播方向,如果控制得当可以提高光电转换效率;吸收系数和消光系数则直接关系到光电阴极能够有效吸收多少入射光,从而直接影响阴极量子效率。K2CsSb、K2Cs0.75Rb0.25Sb、K2Cs0.5Rb0.5Sb、K2Cs0.25Rb0.75Sb、K2RbSb这5种体材料的反射率、折射率、消光系数和吸收系数如图3所示。可以看出,在2.4~3.2 eV的中微子辐射探测波段,5种材料的反射率、折射率、消光系数、吸收系数曲线接近重合,没有显著差别,说明Rb原子的掺入对K2CsSb体材料光学性质的影响甚微,入射光子与这5种不同Cs/Rb比例的材料的相互作用基本没有差异。总体上看,这5种不同Cs/Rb比例的K-Cs-Rb-Sb材料的反射率、折射率、消光系数、吸收系数从0 eV开始逐渐增大,分别在3.9 eV、1.9 eV、2.4 eV、3.7 eV左右达到最大峰值,随后又出现若干小峰值,不过整体呈现出波动下降的趋势。

图 3. 不同Cs/Rb比例K-Cs-Rb-Sb体模型的光学性质。(a)反射率;(b)折射率;(c)消光系数;(d)吸收系数

Fig. 3. Optical properties of K-Cs-Rb-Sb bulk models with different Cs/Rb ratios. (a) Reflectivity; (b) refractive index; (c) extinction coefficient; (d) absorption coefficient

下载图片 查看所有图片

图4分别给出了这5种Cs/Rb比例K-Cs-Rb-Sb体模型的能带图,费米能级被统一在0 eV的位置处,其中费米能级以上为导带,费米能级以下为价带。从图4(a)~(e)中可以看出,5种结构的费米能级相对更靠近价带,均呈现出p型半导体的属性。5种半导体体模型的带隙类型均为直接带隙,电子跃迁时不需要吸收或发射声子辅助,这对光电发射起到积极效果。此外,含有K、Cs、Rb三种碱金属的K2Cs0.75Rb0.25Sb、K2Cs0.5Rb0.5Sb、K2Cs0.25Rb0.75Sb的导带和价带更密集。5种体模型的禁带宽度大小如表1所示。在体模型中,K2Cs0.25Rb0.75Sb的禁带宽度最小,说明在光的激发下,光生电子从价带跃迁到导带所损耗的能量在5种结构中最少,在大致相同的吸收系数情况下,这有利于更多的价带电子跃迁到导带,从而利于光电发射。对于光电阴极而言,禁带宽度决定了光电阴极对入射光吸收的最大波长,禁带宽度小意味着光电阴极对入射光具有更宽的响应。

图 4. 不同Cs/Rb比例K-Cs-Rb-Sb体模型的能带

Fig. 4. Band structures of K-Cs-Rb-Sb bulk models with different Cs/Rb ratios

下载图片 查看所有图片

表 1. 不同Cs/Rb比例K-Cs-Rb-Sb体模型的禁带宽度

Table 1. Band gaps of K-Cs-Rb-Sb bulk models with different Cs/Rb ratios

ModelBand gap /eV
K2CsSb0.844
K2Cs0.75Rb0.25Sb0.736
K2Cs0.5Rb0.5Sb0.678
K2Cs0.25Rb0.75Sb0.660
K2RbSb0.677

查看所有表

3.2 K‑Cs‑Rb‑Sb表面模型性质分析

半导体的功函数表征了光电子从表面逃逸到真空中的能力,是光电发射“三步模型”理论中的重要参数24,可表示为

φ=Evacuum-Ef

式中:EvacuumEf分别代表真空能级和费米能级。图5给出了5种不同Cs/Rb比例表面模型的功函数。相对于只有K、Cs两种碱金属的K-Cs-Sb(111)表面模型,存在Rb元素的表面模型具有较大的功函数,且只存在K、Rb两种碱金属的K-Rb-Sb(111)表面模型的功函数最大,这说明Rb可以增大表面模型的功函数。值得注意的是,在含有K、Cs、Rb三种碱金属的表面模型中,Cs/Rb比例为1∶3的K-Cs-Rb-Sb表面模型具有最小的功函数。

图 5. 不同Cs/Rb比例K-Cs-Rb-Sb(111)表面模型的功函数和表面能

Fig. 5. Work function and surface energy of K-Cs-Rb-Sb (111) surface models with different Cs/Rb ratios

下载图片 查看所有图片

对于光电阴极器件而言,当探测微弱信号时,热发射形成的暗电流会对微弱信号的探测产生较大干扰,暗电流越小则光电倍增管器件对于极微弱信号的探测越有优势;量子效率代表了光电阴极进行光电转换的能力,是指光电阴极在接收到光子后成功产生并释放电子的概率,量子效率高意味着光电阴极对光子的响应更灵敏,输出信号更强。暗电流和量子效率这两项重要指标都与功函数有很大的关系。首先,热电子发射电流与热力学温度和功函数相关,在温度相同的情况下,功函数的大小决定了阴极面的热电子发射量,功函数的降低会导致热电子发射量变大,然而功函数升高也会导致光电阴极器件的量子效率变低。综合来看,Cs∶Rb为1∶3的K-Cs-Rb-Sb(111)表面可以在保证大量光电子能够逸出表面的前提下,阻止部分热电子逸出,以达到在降低阴极暗电流的同时不降低量子效率的目的。

表面能σ表示单位面积形成一个新的表面所需的能量,用于判断表面结构的稳定性,可通过以下公式25计算:

σ=Eslab-nEbulk2A

式中:Eslab表示已经完全弛豫的表面模型的总能量;Ebulk表示K-Cs-Rb-Sb体模型的总能量;n表示该表面结构中体模型的单元数;2A表示上下表面积之和。由于(111)表面具有冗余原子,本文将计算公式改为以下公式来近似得到表面能:

σ=Eslab-nKμK-nCsμCs-nRbμRb-nSbμSb2A

式中:nKnCsnRbnSb分别为K、Cs、Rb、Sb的原子数目;μK、μCs、μRb、μSb分别为K、Cs、Rb、Sb原子的化学势。通过计算得到5种Cs/Rb比例下阴极(111)表面的表面能如图5所示,可以看出,随着结构中Rb取代Cs的原子数目增多,表面能逐渐减小,结构更加稳定。

半导体的离化能代表电子从价带顶跃迁到真空能级的能力。离化能I26可表示为

I=Evacuum-Ev

式中:EvacuumEv分别代表半导体的真空能级和价带顶能量,其数值如表2所示。由表2可知,随着结构中Rb取代Cs的原子数目增多,真空能级逐渐降低。综合来看,K2Cs0.25Rb0.75Sb所对应表面模型的离化能最小,这说明该结构化合物中的电子在外界光激发下,最容易从价带顶跃迁到真空能级,即最有利于光电发射。

表 2. 不同Cs/Rb比例K-Cs-Rb-Sb(111)表面模型的真空能级、价带顶能量和离化能

Table 2. Vacuum level, valence band top energy, and ionization energy of K-Cs-Rb-Sb (111) surface models with different Cs/Rb ratios

ModelVacuum level /eVValence band top enengy /eVIonization energy /eV
K2CsSb3.185-0.72753.9125
K2Cs0.75Rb0.25Sb3.136-0.67823.8142
K2Cs0.5Rb0.5Sb3.044-0.81173.8557
K2Cs0.25Rb0.75Sb2.947-0.81893.7659
K2RbSb2.885-0.92053.8055

查看所有表

电导率σ反映了半导体的导电能力,根据Drude模型,其表达式27

σ=qμn

式中:q为电子电荷量;n为载流子浓度;μ为载流子迁移率,表征载流子在电场作用下加速运动快慢的一个物理量,其表达式28

μ=qtmeff

式中:t为散射时间;meff为电子有效质量。根据能带结构,导带的电子有效质量meff21可以表示为

1meff=d2E2dk2

式中:代表归一化的普朗克常数。表3给出了这5种表面模型的电子有效质量meff相对于电子静止质量m0的计算结果。可以看出,随着Rb原子数目的增加,导带的电子有效质量逐渐减小,这种现象有利于电子转移,提高载流子迁移率,进而提高电导率。

表 3. 不同Cs/Rb比例K-Cs-Rb-Sb(111)表面模型的电子有效质量

Table 3. Electron effective mass of K-Cs-Rb-Sb (111) surface models with different Cs/Rb ratios

ModelElectronic effective mass
K2CsSb0.0238m0
K2Cs0.75Rb0.25Sb0.0234m0
K2Cs0.5Rb0.5Sb0.0233m0
K2Cs0.25Rb0.75Sb0.0197m0
K2RbSb0.0193m0

查看所有表

此外,增大载流子浓度也有利于提高电导率。表面模型中载流子浓度主要由导带电子贡献,导带电子浓度n18可以表示为

n=1VECfEDCEdE

式中:V为表面模型体积;DCE)为导带附近的态密度;f E)为电子的费米-狄拉克分布。若阴极材料呈现p形半导体、n型表面态性质,则可以获得较好的光电发射能力。根据表面模型能带结构,发现K2CsSb、K2Cs0.75Rb0.25Sb、K2Cs0.5Rb0.5Sb、K2Cs0.25Rb0.75Sb、K2RbSb这5种表面模型呈现n型表面性质,计算得到的导带电子浓度分别为7.944×1018 cm-3、7.255×1018 cm-3、7.031×1019 cm-3、7.336×1019 cm-3、7.795×1019 cm-3。可以看出,在含有K、Cs、Rb 3种碱金属的表面模型中,随着Rb原子替换Cs的原子数目的增加,表面模型的导带电子浓度逐渐增加,K2Cs0.25Rb0.75Sb的导带电子有效质量最小。根据式(8),K2Cs0.25Rb0.75Sb具有最高的电导率,这意味着对于实际制备的光电阴极而言,K2Cs0.25Rb0.75Sb光电阴极降低自身电阻损耗的能力最强,能够更有效地产生并释放光电子,这有助于提高光电阴极的灵敏度和响应速度。

4 结论

本文分别建立了具有DO3立方结构的K2CsSb、K2Cs0.75Rb0.25Sb、K2Cs0.5Rb0.5Sb、K2Cs0.25Rb0.75Sb、K2RbSb 5种碱锑化合物阴极材料的体模型以及与其相对应的(111)表面模型,并采用基于密度泛函理论的第一性原理方法计算了其电子结构和光学性质。计算结果表明,当Rb原子替换Cs原子掺杂时,Rb掺杂对K-Cs-Rb-Sb阴极材料的反射率、折射率、消光系数等光学性质影响甚微。对于不同Cs/Rb比例的K-Cs-Rb-Sb体模型而言,Cs/Rb比例为1∶3的K2Cs0.25Rb0.75Sb具有较低的形成能和形成焓,在自然条件下容易形成且热力学稳定。对于表面模型而言,K2Cs0.25Rb0.75Sb具有较小的表面能、较小的电子有效质量以及较高的电子浓度,还具有最小的禁带宽度和最低的离化能;由于K2Cs0.25Rb0.75Sb的功函数大于K2CsSb,因此,Cs/Rb比例为1∶3的K-Cs-Rb-Sb阴极被认为是具有量子效率高、暗电流低且导电性好等优点的稳定光电发射材料。研究结果对制备高性能的K-Cs-Rb-Sb光电阴极具有一定的指导意义,在传统K2CsSb光电阴极制备过程中,通过掺杂Rb元素使光电倍增管在保持量子效率较高水平的基础上降低暗噪声,从而提升器件在实际应用中的探测灵敏度和准确性。

参考文献

[1] 安迎波. 碱锑光电阴极特性模拟研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2014.

    AnY B. Simulation study on characteristics of alkali antimony photocathode[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2014.

[2] Ren L, Sun J N, Si S G, et al. Study on the improvement of the 20-inch microchannel plate photomultiplier tubes for neutrino detector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 977: 164333.

[3] 曾雨珊, 余谢秋, 田野. 从太赫兹波到光波驱动的集成电子加速器研究进展[J]. 中国激光, 2023, 50(17): 1714008.

    Zeng Y S, Yu X Q, Tian Y. Research advances in integrated electron accelerators driven by spectrum band from terahertz to optical waves[J]. Chinese Journal of Lasers, 2023, 50(17): 1714008.

[4] 王爱伟, 李驰, 戴庆. 基于相干电子源的超快低能电子全息成像[J]. 中国激光, 2023, 50(1): 0113003.

    Wang A W, Li C, Dai Q. Ultrafast low-energy electron holography based on coherent electron source[J]. Chinese Journal of Lasers, 2023, 50(1): 0113003.

[5] Xie J Q, Attenkofer K, Demarteau M, et al. Large area planar photocathode for MCP-based photodetectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 955: 163234.

[6] Dunham B, Barley J, Bartnik A, et al. Record high-average current from a high-brightness photoinjector[J]. Applied Physics Letters, 2013, 102(3): 034105.

[7] Ghosh C, Varma B P. Preparation and study of properties of a few alkali antimonide photocathodes[J]. Journal of Applied Physics, 1978, 49(8): 4549-4553.

[8] Xie J Q, Demarteau M, Wagner R, et al. Synchrotron X-ray study of a low roughness and high efficiency K2CsSb photocathode during film growth[J]. Journal of Physics D: Applied Physics, 2017, 50(20): 205303.

[9] Zhang F, Li X P, Li X S. Development of preparation systems with K2CsSb photocathodes and study on the preparation process[J]. Chinese Physics Letters, 2019, 36(2): 022901.

[10] Cultrera L, Gulliford C, Bartnik A, et al. Rb based alkali antimonide high quantum efficiency photocathodes for bright electron beam sources and photon detection applications[J]. Journal of Applied Physics, 2017, 121(5): 055306.

[11] DvořákM. Some properties of the trialkali Sb-K-Rb-Cs photocathode[M]//Photo-electronic image devices, proceedings of the fourth symposium. Amsterdam: Elsevier, 1969: 347-355.

[12] 高鲁山, 李朝木. 四碱光阴极的研究[J]. 电子学报, 1986, 14(5): 27-31.

    Gao L S, Li C M. Investigation of multi-alkali photocathode[J]. Acta Electronica Sinica, 1986, 14(5): 27-31.

[13] 王宝林, 李朝木, 曾正清, 等. 改进型[Cs, Rb]Na2KSb光阴极的制备研究[J]. 真空与低温, 2009, 15(2): 112-116.

    Wang B L, Li C M, Zeng Z Q, et al. Preparation and study of improvement [Cs, Rb]Na2KSb photo cathode[J]. Vacuum and Cryogenics, 2009, 15(2): 112-116.

[14] Ettema A R H F, de Groot R A. Electronic structure of Cs2KSb and K2CsSb[J]. Physical Review B, 2002, 66(11): 115102.

[15] Kalarasse L, Bennecer B, Kalarasse F. Optical properties of the alkali antimonide semiconductors Cs3Sb, Cs2KSb, CsK2Sb and K3Sb[J]. Journal of Physics and Chemistry of Solids, 2010, 71(3): 314-322.

[16] Kalarasse L, Bennecer B, Kalarasse F, et al. Pressure effect on the electronic and optical properties of the alkali antimonide semiconductors Cs3Sb, KCs2Sb, CsK2Sb and K3Sb∶Ab initio study[J]. Journal of Physics and Chemistry of Solids, 2010, 71(12): 1732-1741.

[17] 舒昭鑫, 张益军, 王兴超, 等. 反位缺陷对K2CsSb光阴极光电性质的影响[J]. 光学学报, 2021, 41(12): 1216001.

    Shu Z X, Zhang Y J, Wang X C, et al. Effect of antisite defects on photoelectric properties of K2CsSb photocathode[J]. Acta Optica Sinica, 2021, 41(12): 1216001.

[18] Wang X C, Zhang K M, Jin M C, et al. First-principles investigation of structural, electronic and optical properties of cubic K2CsSb with different surface orientations[J]. Solid State Communications, 2022, 356: 114960.

[19] Murtaza G, Ullah M, Ullah N, et al. Structural, elastic, electronic and optical properties of bi-alkali antimonides[J]. Bulletin of Materials Science, 2016, 39(6): 1581-1591.

[20] Hafner J. Ab-initio simulations of materials using VASP: density-functional theory and beyond[J]. Journal of Computational Chemistry, 2008, 29(13): 2044-2078.

[21] Shabaev A, Jensen K L, Finkenstadt D, et al. Density of states of Cs3Sb calculated using density-functional theory for modeling photoemission[J]. Proceedings of SPIE, 2017, 10374: 103740L.

[22] Linnik M, Christou A. Calculations of optical properties for quaternary III-V semiconductor alloys in the transparent region and above (0.2-4.0 eV)[J]. Physica B: Condensed Matter, 2002, 318(2/3): 140-161.

[23] 张登琪, 田汉民, 何全民, 等. 低浓度Ge掺杂及Sn、Ge替换CsPbI3的电光学性质[J]. 激光与光电子学进展, 2023, 60(15): 1516002.

    Zhang D Q, Tian H M, He Q M, et al. Electronic and optical properties of low-concentration Ge doping and substitution of Sn and Ge for CsPbI3[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1516002.

[24] Bechstedt F, Scheffler M. Alkali adsorption on GaAs(110): atomic structure, electronic states and surface dipoles[J]. Surface Science Reports, 1993, 18(5/6): 145-198.

[25] Lang N D, Kohn W. Theory of metal surfaces: charge density and surface energy[J]. Physical Review B, 1970, 1(12): 4555-4568.

[26] 吴孔平, 孙昌旭, 马文飞, 等. 铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究[J]. 物理学报, 2017, 66(8): 088102.

    Wu K P, Sun C X, Ma W F, et al. Interface electronic structure and the Schottky barrier at Al-diamond interface: hybrid density functional theory HSE06 investigation[J]. Acta Physica Sinica, 2017, 66(8): 088102.

[27] Phuc H V, Hieu N N, Hoi B D, et al. Tuning the electronic properties, effective mass and carrier mobility of MoS2 monolayer by strain engineering: first-principle calculations[J]. Journal of Electronic Materials, 2018, 47(1): 730-736.

[28] Künzel H, Döhler G H, Ploog K. Determination of photoexcited carrier concentration and mobility in GaAs doping superlattices by Hall effect measurements[J]. Applied Physics A, 1982, 27(1): 1-10.

韩允锋, 金睦淳, 任玲, 王兴超, 张锴珉, 刘晓荣, 钱芸生, 张益军. Rb掺杂对K-Cs-Sb阴极材料光电性质的影响[J]. 光学学报, 2024, 44(4): 0416001. Yunfeng Han, Muchun Jin, Ling Ren, Xingchao Wang, Kaimin Zhang, Xiaorong Liu, Yunsheng Qian, Yijun Zhang. Effect of Rb Doping on Photoelectric Properties of K-Cs-Sb Cathode Material[J]. Acta Optica Sinica, 2024, 44(4): 0416001.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!