硅酸盐学报, 2022, 50 (7): 1865, 网络出版: 2022-12-06  

去顶角八面体LiFe0.12Mn1.88O4正极材料制备及电化学性能

Preparation and Electrochemical Properties of Truncated Octahedral LiFe0.12Mn1.88O4 Cathode Materials
作者单位
1 云南民族大学化学与环境学院,云南民族大学云南省高校绿色化学材料重点实验室,昆明 650500
2 昆明市生态环境局五华分局生态环境监测站,昆明 650031
摘要
尖晶石型LiMn2O4正极材料由于Jahn-Teller效应和Mn溶解,在充放电过程中容量衰减严重,循环稳定性差。联合元素掺杂和单晶形貌调控策略,采用固相燃烧法制备了具有{111}、{100}和{110}晶面的去顶角八面体单晶LiFe0.12Mn1.88O4正极材料。研究结果表明,Fe掺杂没有改变尖晶石型LiMn2O4的晶体结构,有效抑制了Jahn-Teller效应,促进了材料的结晶性及{400}和{440}衍射峰晶面的择优生长,表现出良好的倍率性能和容量保持率。在25 ℃,1 C和5 C倍率下LiFe0.12Mn1.88O4的首次放电比容量分别为105.2 mA·h/g和92.4 mA·h/g,1 000次循环后容量保持率分别为71.1%和75.2%;在高倍率10 C下,经1 000次循环后,其容量保持率可达到88.4%。在55 ℃和1 C条件下,首次放电比容量为108.6 mA·h/g,经150次循环后,容量保持率为79.1%。通过循环伏安和电化学阻抗分析,Fe掺杂材料具有较好的循环可逆性和较大的Li+扩散系数。Fe掺杂去顶角八面体LiMn2O4材料既抑制了Jahn-Teller效应,又减缓了Mn的溶解,稳定晶体结构,同时增加Li+迁移通道,提高电化学倍率性能及长循环寿命。
Abstract
Spinel LiMn2O4 cathode materials suffer a serious capacity decay and a poor cycle stability during the charge-discharge process due to the Jahn-Teller effect and Mn dissolution. A cathode material of truncated octahedral single crystal LiFe0.12Mn1.88O4 with {111}, {100} and {110} surfaces was prepared by a solid-state combustion method and element doping and single crystal morphology controlling strategies. The results show that the crystal structure of spinel LiMn2O4 is not changed by Fe doping, the Jahn-Teller effect is effectively inhibited, the crystallinity and the selective growth of {400} and {440} diffraction peak crystal planes are promoted, and the material has superior rate performance and capacity retention. The initial discharge specific capacities at 1 C and 5 C at 25 ℃ are 105.2 mA·h/g and 92.4 mA·h/g, and the capacity retentions after 1 000 cycles are 71.1% and 75.2%, respectively. Moreover, the capacity retention reaches 88.4% after 1 000 cycles at 10 C. The initial discharge capacity of the material is 108.6 mA·h/g at 55 ℃ and 1 C, and the capacity retention rate is 79.1% after 150 cycles, and the capacity retention rate is 79.1% after 150 cycles. By using cyclic voltammetry and electrochemical impedance spectroscopy, we found that the Fe-doped sample has superior circulation reversibility and large Li+ diffusion coefficient. The Fe-doped material of truncated octahedral LiMn2O4 inhibits the Jahn-Teller effect, and slows down the Mn dissolution, thus stabilizing the crystal structure, increasing the Li+ migration channel, and improving the electrochemical rate performance and long cycle life.
参考文献

[1] MAO F, GUO W, MA J. Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes[J]. RSC Adv, 2015, 5(127): 105248-105258.

[2] 梁其梅, 刘清, 郭俊明, 等. 尖晶石型Li1.02Ni0.05Mn1.93O4正极材料的合成及电化学性能[J]. 硅酸盐学报, 2021, 49(6): 1048-1055.

[3] DAI S, ZENG F, ZHANG J, et al. Homogeneous precipitation synthesis of porous LiMn2O4 with enhanced electrochemical performance[J]. Ionics, 2021, 27(10): 4233-4240.

[4] CHEN H, MA T, ZENG Y, et al. Mechanism of capacity fading caused by Mn (II) deposition on anodes for spinel lithium manganese oxide cell[J]. J Wuhan Univ Technol, 2017, 32(1): 1-10.

[5] FERGUS J W. Recent developments in cathode materials for lithium ion batteries[J]. J Power Sources, 2010, 195(4): 939-954.

[6] ZHAO H Y, LI F, LIU X, et al. A simple, low-cost and eco-friendly approach to synthesize single-crystalline LiMn2O4 nanorods with high electrochemical performance for lithium-ion batteries[J]. Electrochim Acta, 2015, 166: 124-133.

[7] 李文博, 李世友, 耿彤彤, 等. 锰系锂离子电池正极材料的锰溶解及沉积机理研究进展[J]. 硅酸盐学报, 2020, 48(1): 73-78.

[8] DENG B, NAKAMURA H, YOSHIO M. Capacity fading with oxygen loss for manganese spinels upon cycling at elevated temperatures[J]. J Power Sources, 2008, 180(2): 864-868.

[9] CHEN D, KRAMER D, MONIG R. Chemomechanical fatigue of LiMn1.95Al0.05O4 electrodes for lithium-ion batteries[J]. Electrochim Acta, 2017, 259: 939-948.

[10] WALLER G H, BROOKE P D, RAINWATER B H, et al. Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime[J]. J Power Sources, 2016, 306: 162-170.

[11] KIM J S, KIM K S, CHO W, et al. A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries[J]. Nano Lett, 2012, 12(12): 6358-6365.

[12] 唐爱东, 黄可龙, 刘素琴. 尖晶石锂锰氧结构中的氧缺陷及其修复方法[J]. 化学学报, 2006, 64(7): 605-610.

[13] 梁其梅, 郭昱娇, 郭俊明, 等. 亚微米去顶角八面体LiNi0.08Mn1.92O4正极材料制备及高温电化学性能[J]. 化学学报, 2021, 79(12): 1526-1533.

[14] BAI H L, XU W Q, LI Q L, et al. Synthesis and electrochemical study of spinel LiCu0.05Mn1.95O4 via a solution combustion method as a cathode material for lithium ion batteries[J]. Int J Electrochem Sci, 2016, 11: 2177-2184.

[15] TANIGUCHI I. Powder properties of partially substituted LiMxMn2?傆bxO4 (M=Al, Cr, Fe and Co) synthesized by ultrasonic spray pyrolysis[J]. Mater Chem Phys, 2005, 92(1): 172-179.

[16] GU H, WANG G, ZHU C, et al. Correlating cycle performance improvement and structural alleviation in LiMn2-xMxO4 spinel cathode materials: A systematic study on the effects of metal-ion doping[J]. Electrochim Acta, 2018, 298: 806-817.

[17] DENG Y, ZHOU Y, SHI Z, et al. Porous LiMn2O4 microspheres as durable high power cathode materials for lithium ion batteries[J]. J Mater Chem A, 2013, 1(28): 8170-8177.

[18] LIU H, TIAN R, JIANG Y, et al. On the drastically improved performance of Fe-doped LiMn2O4 nanoparticles prepared by a facile solution-gelation route[J]. Electrochim Acta, 2015, 180: 138-146.

[19] 杨茗佳, 陈猛, 张维维. LiFexMn2-xO4材料的制备与性能研究[J]. 电池工业, 2008, 13(6): 393-396.

[20] JIANG C H, TANG Z L, WANG S T, et al. A truncated octahedral spinel LiMn2O4 as high-performance cathode material for ultrafast and long-life lithium-ion batteries[J]. J Power Sources, 2017, 357: 144-148.

[21] CAI Y, HUANG Y, WANG X, et al. Long cycle life, high rate capability of truncated octahedral LiMn2O4 cathode materials synthesized by a solid-state combustion reaction for lithium ion batteries[J]. Ceram Int, 2014, 40(9): 14039-14043.

[22] BENEDEK R, THACKERAY M M. Simulation of the surface structure of lithium manganese oxide spinel[J]. Phys Rev B, 2011, 83: 195439.

[23] WU Y, CAO C, ZHANG J, et al. Hierarchical LiMn2O4 hollow cubes with exposed {111} planes as high-power cathodes for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2016, 8(30): 19567-19572.

[24] SINGH P, SIL A, NATH M, et al. Preparation and characterization of lithium manganese oxide cubic spinel Li1.03Mn1.97O4 doped with Mg and Fe[J]. Phys B, 2010, 405(2): 649-654.

[25] 刘红雷, 郭俊明, 向明武, 等. 亚微米LiFe0.05Mn1.95O4正极材料的制备及电化学性能[J]. 化工进展, 2021, 40(7): 3915-3922.

[26] 段玉珍, 朱金玉, 郭俊明, 等. 尖晶石型锰酸锂正极材料LiNi0.01Co0.03Mn1.96O4的合成及电化学性能[J]. 高等学校化学学报, 2019, 40(12): 2574-2582.

[27] LIANG Q M, WANG Z L, BAI W, et al. Stimulative formation of truncated octahedral LiMn2O4 by Cr and Al co-doping for use in durable cycling Li-ion batteries[J]. Dalton T, 2021, 50: 17052-17061.

[28] GROSVENOR A P, KOBE B A, BIESINGER M C, et al. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in ironcompounds[J]. Surf Interface Anal, 2004, 36: 1564-1574.

[29] WU Q H, XU J M, ZHUANG Q C, et al. X-ray photoelectron spectroscopy of LiM0.05Mn1.95O4 (M=Ni, Fe and Ti)[J]. Solid State Ionics, 2006, 177: 1483-1488.

[30] ARMELAO L, BERTONCELLO R, CROCIANI L, et al. XPS and UV-VIS study of high-purity Fe2O3 thin films obtained using the sol-gel technique[J]. J Mater Chem, 1995, 5(1): 79-83.

[31] LI X, SHAO Z, LIU K, et al. Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel[J]. Electroanal Chem, 2018, 818: 204-209.

[32] YANG C X, DENG Y F, GAO M, et al. High-rate and long-life performance of a truncated spinel cathode material with off-stoichiometric composition at elevated temperature[J]. Electrochim Acta, 2017, 225: 198-206.

[33] WANG C, LU S, KAN S, et al. Enhanced capacity retention of Co and Li doubly doped LiMn2O4[J]. J Power Sources, 2009, 189(1): 607-610.

[34] XIONG L, XU Y, TAO T, et al. Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries[J]. J Power Sources, 2012, 199: 214-219.

[35] WANG J L, LI Z H, YANG J, et al. Effect of Al-doping on the electrochemical properties of a three-dimensionally porous lithium manganese oxide for lithium-ion batteries[J]. Electrochim Acta, 2012, 75: 115-122.

杨梅, 陈奕妃, 刘红雷, 向明武, 郭昱娇, 刘晓芳, 郭俊明. 去顶角八面体LiFe0.12Mn1.88O4正极材料制备及电化学性能[J]. 硅酸盐学报, 2022, 50(7): 1865. YANG Mei, CHEN Yifei, LIU Honglei, XIANG Mingwu, GUO Yujiao, LIU Xiaofang, GUO Junming. Preparation and Electrochemical Properties of Truncated Octahedral LiFe0.12Mn1.88O4 Cathode Materials[J]. Journal of the Chinese Ceramic Society, 2022, 50(7): 1865.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!