人工晶体学报, 2023, 52 (1): 139, 网络出版: 2023-03-18  

具有n-n型异质结的复合材料Bi2S3/MIL-125(Ti)光电性能研究

Photoelectric Properties of Bi2S3/MIL-125(Ti) Composites with n-n Heterostructure
作者单位
1 北方民族大学材料科学与工程学院,银川 750021
2 工业废弃物循环利用及先进材料“国际合作基地”,银川 750021
摘要
以硫代硫酸钠·五水合物(Na2S2O3·5H2O)、硝酸铋·五水合物(BiN3O9·5H2O)为硫源和铋源,尿素(CON2H4)为结构导向剂,制备了纳米棒状结构的硫化铋(Bi2S3),使其原位生长在MIL-125(Ti)的笼状结构表面。PEC性能测试显示,在0.5 mol·L-1的硫酸钠电解液(pH=6.0)中,Bi2S3/MIL-125(Ti)0.07(MIL-125(Ti)加入量为0.07 g)的复合材料表现出最高的光电性能。光电性能的显著增强主要取决于Bi2S3/MIL-125复合材料的带隙重整效应,对紫外光以及可见光的吸收能力显著提高。但由于Bi2S3/MIL-125光电极与电解液界面之间的电子转移缓慢,为了改善Bi2S3/MIL-125光电极的界面电荷转移动力学性能,利用热还原法引入Ag NPs对Bi2S3/MIL-125光电极进行修饰,制备出的Ag-Bi2S3/MIL-125光电极加快了界面间的电子转移。在-0.5~-0.8 V(versus Ag/AgCl),Bi2S3/MIL-125(Ti)0.07的最大饱和光电流(-0.90 mA·cm-2)是未修饰的Bi2S3(-0.61 mA·cm-2)的1.5倍;Ag-Bi2S3/MIL-125(Ti)0.07的最大饱和光电流(-1.87 mA·cm-2)是未修饰的Bi2S3(-0.61 mA·cm-2)的3.1倍。
Abstract
Using sodium thiosulfate pentahydrate (Na2S2O3·5H2O), bismuth nitrate pentahydrate (BiN3O9·5H2O) as sulfur source and bismuth source, and urea (CON2H4) as structure guide agent, bismuth sulfide (Bi2S3) with nanorod structure was prepared. It was grown in situ on the cage-like surface of MIL-125(Ti). PEC performance test shows that in 0.5 mol·L-1 sodium sulfate electrolyte (pH=6.0), Bi2S3/MIL-125(Ti)0.07(the addition amount of MIL-125(Ti) is 0.07 g) composite has the highest photoelectric property. The significant enhancement of photoelectric property mainly depends on the bandgap reforming effect of Bi2S3/MIL-125 composite, which significantly improves the absorption capacity of ultraviolet light and visible light. However, due to the slow electron transfer between Bi2S3/MIL-125 photoelectrode and electrolyte interface, in order to improve the interface charge transfer kinetic performance of Bi2S3/MIL-125 photoelectrode, Ag NPs was introduced by thermal reduction method to modify the Bi2S3/MIL-125 photoelectrode. The Ag-Bi2S3/MIL-125 photoelectrode was prepared to accelerate the electron transfer between interfaces. In the range from -0.5 V to -0.8 V (versus Ag/AgCl), maximum saturation photocurrent of Bi2S3/MIL-125(Ti)0.07 (-0.90 mA·cm-2) is about 1.5 times of unmodified Bi2S3(-0.61 mA·cm-2), and maximum saturation photocurrent of Ag-Bi2S3/MIL-125(Ti)0.07 (-1.87 mA·cm-2) is about 3.1 times of unmodified Bi2S3 (-0.61 mA·cm-2).
参考文献

[1] CAREY J H, OLIVER B G. Intensity effects in the electrochemical photolysis of water at the TiO2 electrode[J]. Nature, 1976, 259(5544): 554-556.

[2] NIU F J, WANG D G, LI F, et al. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly[J]. Advanced Energy Materials, 2020, 10(11): 1900399.

[3] YANG W, PRABHAKAR R R, TAN J, et al. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting[J]. Chemical Society Reviews, 2019, 48(19): 4979-5015.

[4] SONG H H, SUN Z Q, XU Y, et al. Fabrication of NH2-MIL-125(Ti) incorporated TiO2 nanotube arrays composite anodes for highly efficient PEC water splitting[J]. Separation and Purification Technology, 2019, 228: 115764.

[5] LI D, TAKEUCHI R, CHANDRA D, et al. Visible light-driven water oxidation on an in situ N2-intercalated WO3 nanorod photoanode synthesized by a dual-functional structure-directing agent[J]. ChemSusChem, 2018, 11(7): 1151-1156.

[6] BAI S, YANG X J, LIU C Y, et al. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (10): 12906.

[7] KAUR P, PARK Y, SILLANP M, et al. Synthesis of a novel SnO2/graphene-like carbon/TiO2 electrodes for the degradation of recalcitrant emergent pharmaceutical pollutants in a photo-electrocatalytic system[J]. Journal of Cleaner Production, 2021, 313: 127915.

[8] LI Y, WANG Q Z, HU X S, et al. Constructing NiFe-metal-organic frameworks from NiFe-layered double hydroxide as a highly efficient cocatalyst for BiVO4 photoanode PEC water splitting[J]. Chemical Engineering Journal, 2022, 433: 133592.

[9] WANG J, XUE C, YAO W Q, et al. MOF-derived hollow TiO2@C/FeTiO3 nanoparticles as photoanodes with enhanced full spectrum light PEC activities[J]. Applied Catalysis B: Environmental, 2019, 250: 369-381.

[10] ALI M, PERVAIZ E, NOOR T, et al. Recent advancements in MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: a review[J]. International Journal of Energy Research, 2021, 45(2): 1190-1226.

[11] YUE K, ZHANG X D, JIANG S T, et al. Recent advances in strategies to modify MIL-125(Ti) and its environmental applications[J]. Journal of Molecular Liquids, 2021, 335: 116108.

[12] HAN X, YANG X B, LIU G B, et al. Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125(Ti)[J]. Chemical Engineering Research and Design, 2019, 143: 90-99.

[13] WANG H, ZHANG Q, LI J J, et al. The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance[J]. Journal of Colloid and Interface Science, 2022, 606: 1745-1757.

[14] GUO H X, GUO D, ZHENG Z S, et al. Visible-light photocatalytic activity of Ag@MIL-125(Ti) microspheres[J]. Applied Organometallic Chemistry, 2015, 29(9): 618-623.

[15] VALERO-ROMERO M J, SANTACLARA J G, OAR-ARTETA L, et al. Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis[J]. Chemical Engineering Journal, 2019, 360: 75-88.

[16] SALIMI M, ESRAFILI A, JONIDI JAFARI A, et al. Photocatalytic degradation of cefixime with MIL-125(Ti)-mixed linker decorated by g-C3 N4 under solar driven light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582: 123874.

[17] LONG Z Q, ZHANG G M, DU H B, et al. Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2021, 407: 124394.

[18] MANO G, YANG H, JOY T, et al. Preparation of SrTiO3/Bi2S3 heterojunction for efficient photocatalytic hydrogen production[J]. Energy & Fuels, 2021, 35(18): 14995-15004.

[19] LIANG Y C, LI T H. Controllable morphology of Bi2S3 nanostructures formed via hydrothermal vulcanization of Bi2O3 thin-film layer and their photoelectrocatalytic performances[J]. Nanotechnology Reviews, 2021, 11: 284-297.

[20] DAN-HARDI M, SERRE C, FROT T, et al. A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859.

[21] ZLOTEA C, PHANON D, MAZAJ M, et al. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs[J]. Dalton Transactions, 2011, 40(18): 4879-4881.

[22] WANG M H, YANG L Y, YUAN J Y, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light[J]. RSC Advances, 2018, 8(22): 12459-12470.

[23] KIM S N, KIM J, KIM H Y, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204: 85-93.

[24] YU C F, WANG K, YANG P Y, et al. One-pot facile synthesis of Bi2S3/SnS2/Bi2O3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation[J]. Applied Surface Science, 2017, 420: 233-242.

[25] LI J L, MENG F M, WU H T, et al. Construction of Ag: ZnIn2S4/Bi2S3 Z-scheme heterojunctions for boosting interfacial charge separation and photocatalytic degradation of TC[J]. Applied Surface Science, 2022, 605: 154763.

[26] ZHAO L Z, WU H H, YANG C H, et al. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes[J]. ACS Nano, 2018, 12(12): 12597-12611.

[27] RI C N, SONG-GOL K, JU-YONG J, et al. Construction of the Bi2WO6/Bi4V2O11 heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(vi)[J]. New Journal of Chemistry, 2018, 42(1): 647-653.

[28] LI C M, YU S Y, DONG H J, et al. Mesoporous ferriferrous oxide nanoreactors modified on graphitic carbon nitride towards improvement of physical, photoelectrochemical properties and photocatalytic performance[J]. Journal of Colloid and Interface Science, 2018, 531: 331-342.

[29] TIAN N, HUANG H W, LIU C Y, et al. In situ co-pyrolysis fabrication of CeO2/g-C3 N4 n-n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties[J]. Journal of Materials Chemistry A, 2015, 3(33): 17120-17129.

[30] LIU C, LIU T, LI Y Z, et al. A dendritic Sb2Se3/In2S3 heterojunction nanorod array photocathode decorated with a MoSx catalyst for efficient solar hydrogen evolution[J]. Journal of Materials Chemistry A, 2020, 8(44): 23385-23394.

兰博洋, 祁婉欣, 李东, 韩凤兰. 具有n-n型异质结的复合材料Bi2S3/MIL-125(Ti)光电性能研究[J]. 人工晶体学报, 2023, 52(1): 139. LAN Boyang, QI Wanxin, LI Dong, HAN Fenglan. Photoelectric Properties of Bi2S3/MIL-125(Ti) Composites with n-n Heterostructure[J]. Journal of Synthetic Crystals, 2023, 52(1): 139.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!