作者单位
摘要
1 北方民族大学材料科学与工程学院,银川 750021
2 工业废弃物循环利用及先进材料“国际合作基地”,银川 750021
以硫代硫酸钠·五水合物(Na2S2O3·5H2O)、硝酸铋·五水合物(BiN3O9·5H2O)为硫源和铋源,尿素(CON2H4)为结构导向剂,制备了纳米棒状结构的硫化铋(Bi2S3),使其原位生长在MIL-125(Ti)的笼状结构表面。PEC性能测试显示,在0.5 mol·L-1的硫酸钠电解液(pH=6.0)中,Bi2S3/MIL-125(Ti)0.07(MIL-125(Ti)加入量为0.07 g)的复合材料表现出最高的光电性能。光电性能的显著增强主要取决于Bi2S3/MIL-125复合材料的带隙重整效应,对紫外光以及可见光的吸收能力显著提高。但由于Bi2S3/MIL-125光电极与电解液界面之间的电子转移缓慢,为了改善Bi2S3/MIL-125光电极的界面电荷转移动力学性能,利用热还原法引入Ag NPs对Bi2S3/MIL-125光电极进行修饰,制备出的Ag-Bi2S3/MIL-125光电极加快了界面间的电子转移。在-0.5~-0.8 V(versus Ag/AgCl),Bi2S3/MIL-125(Ti)0.07的最大饱和光电流(-0.90 mA·cm-2)是未修饰的Bi2S3(-0.61 mA·cm-2)的1.5倍;Ag-Bi2S3/MIL-125(Ti)0.07的最大饱和光电流(-1.87 mA·cm-2)是未修饰的Bi2S3(-0.61 mA·cm-2)的3.1倍。
Bi2S3纳米棒 溶剂热法 异质结 光电性能 光电极 MIL-125(Ti) MIL-125(Ti) Bi2S3 nanorod solvothermal method heterojunction photoelectric property photo electrode 
人工晶体学报
2023, 52(1): 139

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!