微电子学, 2023, 53 (2): 295, 网络出版: 2023-12-15  

柔性压力传感器成型技术及制备工艺研究进展

Research Progress of Flexible Pressure Sensor’s Molding Technologies and Preparation Processes
作者单位
1 南京邮电大学 集成电路科学与工程学院, 南京 210023
2 南京邮电大学 射频集成与微组装技术国家地方联合工程实验室, 南京 210023
摘要
应用日益广泛的可穿戴设备要求其中的传感器件可拉伸、可弯曲,因此柔性传感器已受到人们的重视。文章对柔性压力传感器的微结构、材料、制备工艺等方面进行了综述,重点总结了现阶段柔性传感器所采用的各种结构,比较了天然微结构、仿生表面微结构、多孔结构、多级结构、多层结构柔性压力传感器的重要性能。介绍了目前常用的柔性基底材料和导电活性材料,对比了光刻技术、3D打印等制造工艺的优缺点,对柔性压力传感器的未来研究方向进行了展望。文章对相关柔性器件的研究具有较高的理论价值和工程参考意义。
Abstract
Wearable devices, which are widely used, require stretchable and bendable sensors, so flexible sensors have received much attention. This paper presents a review of flexible pressure sensors in terms of microstructures, materials, and preparation processes, focusing on summarizing the different structures of flexible sensors at the present stage and comparing the important properties of flexible pressure sensors with natural microstructures, bionic surface microstructures, porous structures, multilevel structures, and multilayer structures. The commonly used flexible substrate materials and conductive active materials are introduced. Comparing the advantages and disadvantages of lithography technology, 3D printing and other manufacturing processes, it is found that the flexible pressure sensor with excellent comprehensive performance and repeatability is more complicated to manufacture and has a higher cost. The future research direction of flexible pressure sensor is prospected. This paper has a high theoretical value and engineering reference significance for related flexible devices.
参考文献

[1] LI R, ZHOU Q, BI Y, et al. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches[J]. Sensors and Actuators A: Physical, 2021, 321: 112425.

[2] RUTH S R A,FEIG V R,TRAN H,et al. Microengineering pressure sensor active layers for improved performance [J]. Advanced Functional Materials, 2020, 30(39): 2003491.

[3] JIAN M,XIA K,WANG Q,et al. Flexible and highly sensitive pressure sensors based on bionic hierarchical structures [J]. Advanced Functional Materials,2017,27(9): 1606066.

[4] WEI Y, CHEN S, LIN Y, et al. Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure [J]. Journal of Materials Chemistry C, 2015, 3(37): 9594-9602.

[5] WAN Y, QIU Z, HONG Y, et al. A highly sensitive flexible capacitive tactile sensor with sparse and high‐aspect‐ratio microstructures [J]. Advanced Electronic Materials, 2018, 4(4): 1700586.

[6] QIU Z, WAN Y, ZHOU W, et al. Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf [J]. Advanced Functional Materials, 2018, 28(37): 1802343.

[7] WANG X,GU Y,XIONG Z,et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals [J]. Advanced Materials, 2013, 26(9): 1336-1342.

[8] 李明星, 姚佳楠, 刘江, 等. 基于磨砂玻璃压印的压阻式柔性压力传感器 [J]. 固体电子学研究与进展, 2017,41(2): 154-159.

[9] PARK S J,KIM J,CHU M,et al. Flexible piezoresistive pressure sensor using wrinkled carbon nanotube thin films for human physiological signals [J]. Advanced Materials Technologies,2017,3(1): 1700158.

[10] BEAK S,JANG H,KIM S,et al. Flexible piezocapacitive sensors based on wrinkled microstructures:toward low-cost fabrication of pressure sensors over large areas [J]. RSC Advances,2012, 7(63): 39420-39426.

[11] SHAO Q, NIU Z, HIRTZ M, et al. High‐performance and tailorable pressure sensor based on ultrathin conductive polymer film [J]. Small, 2014, 10(8): 1466-1472.

[12] CHOONG C L,SHIM M B,LEE B S,et al. Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array [J]. Advanced Materials,2014,26(21): 3451-3458.

[13] TEE B C K,CHORTOS A,DUNN R R, et al. Tunable flexible pressure sensors using microstructured elastomer geometries for intuitive electronics [J]. Advanced Functional Materials,2014,24(34): 5427-5434.

[14] KHALILI N,SHEN X,NAGUIB H E,et al. An interlocked flexible piezoresistive sensor with 3D micropyramidal structures for electronic skin applications [J]. Soft Matter,2018,14(33): 6912-6920.

[15] RUTH S R A, BEKER L, TRAN H, et al. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals [J]. Advanced Functional Materials, 2020, 30(29): 1903100.

[16] PANG C,LEE G Y,KIM T,et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres [J]. Nature Materials, 2012,11(9): 795-801.

[17] 赵秀华, 徐伟, 易旺民, 等. 基于Ag/CNTs-PDMS的高灵敏度柔性压力传感器研制及性能测试 [J]. 航天器环境工程, 2019, 36(3): 271-277.

[18] ZHANG Y,HU Y,ZHAO T,et al. Highly sensitive flexible pressure sensor based on microstructured PDMS for wearable electronics application [J]. 18 th International Conference on Microstructured PDMS for Wearable Electronics Application (ICEPT). 2017:853-856.

[19] CHENG W,WANG J,MA Z,et al. Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode [J]. IEEE Electron Device Letter,2018,39(2): 288-291.

[20] LEE Y, PARK J, CHO S, et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range [J]. ACS Nano, 2018, 12(4): 4045-4054.

[21] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals [J]. Advanced Materials, 2014, 26(9): 1336-1342.

[22] RYU S, LEE P, CHOU J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion [J]. ACS Nano, 2015, 9(6): 5929-5936.

[23] LIU H, HUANG W J, YANG X R, et al. Organic vapor sensing behaviors of conductive thermoplastic polyurethane - graphene nanocomposites [J]. Journal of Materials Chemistry C, 2016, 4(20): 4459-4469.

[24] LI X, HUANG W, YAO G, et al. Highly sensitive flexible tactile sensors based on microstructured multiwall carbon nanotube arrays [J]. Scripta Materialia, 2017, 129: 61-64.

[25] ZHU B,NIU Z Q,WANG H,et al. Microstructured graphene arrays for highly sensitive flexible tactile sensors [J]. Small, 2014, 10(18): 3625-3631.

[26] PARK J, LEE Y, HONG J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins [J]. ACS Nano, 2014, 8(5): 4689-4697.

[27] MANNSFELD S C B, TEE B C K, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers [J]. Nature Materials, 2010, 9(10): 859-864.

[28] PENG S, BLANLOEUIL P, WU S, et al. Rational design of ultrasensitive pressure sensors by tailoring microscopic features [J]. Advanced Materials Interfaces, 2018, 5(18): 1800403.

[29] SHI J, WANG L, DAI Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range [J]. Small,2018, 14(27): 1800819.

[30] XU M, LI F, ZHANG Z, et al. Piezoresistive sensors based on rGO 3D microarchitecture: coupled properties tuning in local/integral deformation [J]. Advanced Electronic Materials, 2019, 5(1): 1800461.

[31] YAO H B, HUANG G, CUI C H, et al. Macroscale elastomeric conductors generated from hydrothermally synthesized metal-polymer hybrid nanocable sponges [J]. Advanced Materials, 2011, 23(32): 3643-3647.

[32] JI B, ZHOU Q, WU J, et al. Synergistic optimization toward the sensitivity and linearity of flexible pressure sensor via double conductive layer and porous microdome array [J]. ACS Applied Materials & Interfaces, 2020, 12(27): 31021-31035.

[33] 李云霞. 基于三维多孔结构的柔性电阻式压力传感器研究 [D]. 兰州: 兰州大学, 2022.

[34] WANG L, LOU Z, JIANG K, et al. Bio‐multifunctional smart wearable sensors for medical devices [J]. Advanced Intelligent Systems, 2019, 1(5): 1900040.

[35] HE J, ZHANG Y, ZHOU R, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects [J]. Journal of Materiomics, 2020, 6(1): 86-101.

吴旭鹏, 方玉明, 费宏欣, 蔡滕, 赵江, 李若舟. 柔性压力传感器成型技术及制备工艺研究进展[J]. 微电子学, 2023, 53(2): 295. WU Xupeng, FANG Yuming, FEI Hongxin, CAI Teng, ZHAO Jiang, LI Ruozhou. Research Progress of Flexible Pressure Sensor’s Molding Technologies and Preparation Processes[J]. Microelectronics, 2023, 53(2): 295.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!