中国激光, 2023, 50 (9): 0907209, 网络出版: 2023-04-24  

短波紫外线的消杀机制与影响因素 下载: 615次

UVC Sterilization Mechanism and Influencing Factors
作者单位
中国矿业大学(北京)化学与环境工程学院,北京 100083
引用该论文

竹涛, 付顺江, 谢蔚, 徐欢. 短波紫外线的消杀机制与影响因素[J]. 中国激光, 2023, 50(9): 0907209.

Tao Zhu, Shunjiang Fu, Wei Xie, Huan Xu. UVC Sterilization Mechanism and Influencing Factors[J]. Chinese Journal of Lasers, 2023, 50(9): 0907209.

参考文献

[1] Buchan A G, Yang L, Welch D, et al. Improved estimates of 222 nm far-UVC susceptibility for aerosolized human coronavirus via a validated high-fidelity coupled radiation-CFD code[J]. Scientific Reports, 2021, 11(1): 1-9.

[2] Eadie E, Hiwar W, Fletcher L, et al. Far-UVC (222 nm) efficiently inactivates an airborne pathogen in a room-sized chamber[J]. Scientific Reports, 2022, 12(1): 1-9.

[3] 李立, 白雪涛. 紫外线辐射对人类皮肤健康的影响[J]. 国外医学(卫生学分册), 2008(4): 198-202.

    Li L, Bai X T. Effect of ultraviolet radiation on human skin health[J]. Foreign Medical Sciences (Section Hygiene), 2008(4): 198-202.

[4] 赵智刚, 玄洪文, 王景冲, 等. 真空紫外193 nm波段固体激光器研究进展综述[J]. 光学学报, 2022, 42(11): 1134010.

    Zhao Z G, Xuan H W, Wang J C, et al. Research progresses on vacuum-ultraviolet 193-nm band solid-state lasers[J]. Acta Optica Sinica, 2022, 42(11): 1134010.

[5] 尹知谦, 吕品书, 朱铮, 等. 日光激发无机UVC上转换发光材料的研究[J]. 激光与光电子学进展, 2021, 58(15): 1516013.

    Yin Z Q, Lü P S, Zhu Z, et al. Sunlight-excited inorganic UVC upconversion luminescent materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516013.

[6] Kang J W, Kim S S, Kang D H. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria[J]. Food Research International, 2018, 109: 325-333.

[7] 赵志斌, 程成, 金映虹, 等. 全固态228 nm远紫外脉冲激光的灭菌效果[J]. 中国激光, 2022, 49(15): 1515001.

    Zhao Z B, Cheng C, Jin Y H, et al. Inactivation effect of all-solid-state 228 nm far-UVC pulsed laser[J]. Chinese Journal of Lasers, 2022, 49(15): 1515001.

[8] Eischeid A C, Linden K G. Molecular indications of protein damage in adenoviruses after UV disinfection[J]. Applied and Environmental Microbiology, 2011, 77(3): 1145-1147.

[9] Beck S E, Hull N M, Poepping C, et al. Wavelength-dependent damage to adenoviral proteins across the germicidal UV spectrum[J]. Environmental Science & Technology, 2018, 52(1): 223-229.

[10] Ha J W, Lee J I, Kang D H. Application of a 222-nm krypton-chlorine excilamp to control foodborne pathogens on sliced cheese surfaces and characterization of the bactericidal mechanisms[J]. International Journal of Food Microbiology, 2017, 243: 96-102.

[11] Sinha R P, Häder D P. UV-induced DNA damage and repair: a review[J]. Photochemical & Photobiological Sciences, 2002, 1(4): 225-236.

[12] Rastogi R P, Richa, Kumar A, et al. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair[J]. Journal of Nucleic Acids, 2010, 2010: 592980.

[13] Beck S E, Rodriguez R A, Linden K G, et al. Wavelength dependent UV inactivation and DNA damage of adenovirus as measured by cell culture infectivity and long range quantitative PCR[J]. Environmental Science & Technology, 2014, 48(1): 591-598.

[14] Britt A B. Repair of DNA damage induced by ultraviolet radiation[J]. Plant Physiology, 1995, 108(3): 891-896.

[15] Guo H L, Chu X N, Hu J Y. Effect of host cells on low- and medium-pressure UV inactivation of adenoviruses[J]. Applied and Environmental Microbiology, 2010, 76(21): 7068-7075.

[16] Schreier W J, Gilch P, Zinth W. Early events of DNA photodamage[J]. Annual Review of Physical Chemistry, 2015, 66: 497-519.

[17] Aboussekhra A, Thoma F. TATA-binding protein promotes the selective formation of UV-induced (6-4)-photoproducts and modulates DNA repair in the TATA box[J]. The EMBO Journal, 1999, 18(2): 433-443.

[18] Protić-Sabljić M, Kraemer K H. One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1985, 82(19): 6622-6626.

[19] Mitchell D L, Vaughan J E, Nairn R S. Inhibition of transient gene expression in Chinese hamster ovary cells by cyclobutane dimers and (6-4) photoproducts in transfected ultraviolet-irradiated plasmid DNA[J]. Plasmid, 1989, 21(1): 21-30.

[20] Lindahl T. Instability and decay of the primary structure of DNA[J]. Nature, 1993, 362(6422): 709-715.

[21] BoltonJ R, CottonC A. The ultraviolet disinfection handbook[M]. Denver: American Water Works Association, 2008.

[22] Kim S T, Heelis P F, Sancar A. Energy transfer (deazaflavin → FADH2) and electron transfer (FADH2 → T <> T) kinetics in Anacystis nidulans photolyase[J]. Biochemistry, 1992, 31(45): 11244-11248.

[23] Essen L O, Klar T. Light-driven DNA repair by photolyases[J]. Cellular and Molecular Life Sciences CMLS, 2006, 63(11): 1266-1277.

[24] Zhang L W, Li M, Wu Q Y. Influence of ultraviolet-C on structure and function of Synechococcus sp. PCC 7942 photolyase[J]. Biochemistry (Moscow), 2007, 72(5): 540-544.

[25] Freeman S E, Blackett A D, Monteleone D C, et al. Quantitation of radiation-, chemical-, or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: application to pyrimidine dimers[J]. Analytical Biochemistry, 1986, 158(1): 119-129.

[26] Walker G C. SOS-regulated proteins in translesion DNA synthesis and mutagenesis[J]. Trends in Biochemical Sciences, 1995, 20(10): 416-420.

[27] Rajagopalan M, Lu C, Woodgate R, et al. Activity of the purified mutagenesis proteins UmuC, UmuD’, and RecA in replicative bypass of an abasic DNA lesion by DNA polymerase Ⅲ[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(22): 10777-10781.

[28] 翟娅菲, 田佳丽, 石佳佳, 等. 短波紫外发光二极管处理对脂环酸芽孢杆菌的灭活效果及作用机制[J]. 食品科学, 2022, 43(9): 71-78.

    Zhai Y F, Tian J L, Shi J J, et al. Inactivated effect and mechanisms of ultraviolet-C light-emitting diode on alicyclobacillus acidoterrestris[J]. Food Science, 2022, 43(9): 71-78.

[29] Kim D K, Kim S J, Kang D H. Bactericidal effect of 266 to 279 nm wavelength UVC-LEDs for inactivation of Gram positive and Gram negative foodborne pathogenic bacteria and yeasts[J]. Food Research International, 2017, 97: 280-287.

[30] Li M, Li J H, Yang Y L, et al. Investigation of mouse hepatitis virus strain A59 inactivation under both ambient and cold environments reveals the mechanisms of infectivity reduction following UVC exposure[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107206.

[31] Lo C W, Matsuura R, Iimura K, et al. UVC disinfects SARS-CoV-2 by induction of viral genome damage without apparent effects on viral morphology and proteins[J]. Scientific Reports, 2021, 11(1): 1-11.

[32] Shin M, Kim S S, Kang D H. Combined treatment with a 222-nm krypton-chlorine excilamp and a 280-nm LED-UVC for inactivation of Salmonella Typhimurium and Listeria monocytogenes[J]. LWT, 2020, 131: 109715.

[33] Park S H, Kang J W, Kang D H. Inactivation of foodborne pathogens on fresh produce by combined treatment with UV-C radiation and chlorine dioxide gas, and mechanisms of synergistic inactivation[J]. Food Control, 2018, 92: 331-340.

[34] Yin F G, Zhu Y, Koutchma T, et al. Inactivation and potential reactivation of pathogenic Escherichia coli O157: H7 in apple juice following ultraviolet light exposure at three monochromatic wavelengths[J]. Food Microbiology, 2015, 46: 329-335.

[35] Latarjet R. Introduction to research in ultraviolet photobiology: JOHN JAGGER[J]. Photochemistry and Photobiology, 1968, 7(4): 413.

[36] Lehmann A R. Biological effects of ultraviolet radiation[J]. Nature, 1979, 278(5703): 484.

[37] Beck S E, Wright H B, Hargy T M, et al. Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems[J]. Water Research, 2015, 70: 27-37.

[38] 符纯愿, 杨联武, 罗小亮, 等. LED紫外线剂量对金黄色葡萄球菌杀灭效果的探讨[J]. 轻纺工业与技术, 2021, 50(1): 6-7.

    Fu C Y, Yang L W, Luo X L, et al. Discussion on the efficacy of LED ultraviolet dose in killing Staphylococcus aureus[J]. Light and Textile Industry and Technology, 2021, 50(1): 6-7.

[39] Murashita S, Kawamura S, Koseki S. Inactivation of nonpathogenic Escherichia coli, Escherichia coli O157: H7, Salmonella enterica typhimurium, and Listeria monocytogenes in ice using a UVC light-emitting diode[J]. Journal of Food Protection, 2017, 80(7): 1198-1203.

[40] 宋孟鑫, 张吉库, 宁楠. 紫外线剂量对大肠杆菌光复活的影响[J]. 供水技术, 2019, 13(3): 6-8, 34.

    Song M X, Zhang J K, Ning N. Effect of ultraviolet dose on the photoreactivation of Escherichia coli[J]. Water Technology, 2019, 13(3): 6-8, 34.

[41] Bowker C, Sain A, Shatalov M, et al. Microbial UV fluence-response assessment using a novel UV-LED collimated beam system[J]. Water Research, 2011, 45(5): 2011-2019.

[42] Gopisetty V V S, Patras A, Pendyala B, et al. UV‑C irradiation as an alternative treatment technique: study of its effect on microbial inactivation, cytotoxicity, and sensory properties in cranberry-flavored water[J]. Innovative Food Science & Emerging Technologies, 2019, 52: 66-74.

[43] Biasin M, Bianco A, Pareschi G, et al. UV-C irradiation is highly effective in inactivating SARS-CoV-2 replication[J]. Scientific Reports, 2021, 11(1): 1-7.

[44] Heilingloh C S, Aufderhorst U W, Schipper L, et al. Susceptibility of SARS-CoV-2 to UV irradiation[J]. American Journal of Infection Control, 2020, 48(10): 1273-1275.

[45] Storm N, McKay L G A, Downs S N, et al. Rapid and complete inactivation of SARS-CoV-2 by ultraviolet-C irradiation[J]. Scientific Reports, 2020, 10(1): 1-5.

[46] Ruetalo N, Businger R. Schindler M.Rapid, dose-dependent and efficient inactivation of surface dried SARS-CoV-2 by 254nm UV-C irradiation[J]. Euro Surveillance, 2021, 26(42): 2001718.

[47] Lytle C D, Sagripanti J L. Predicted inactivation of viruses of relevance to biodefense by solar radiation[J]. Journal of Virology, 2005, 79(22): 14244-14252.

[48] Pendyala B, Patras A, Pokharel B, et al. Genomic modeling as an approach to identify surrogates for use in experimental validation of SARS-CoV-2 and HuNoV inactivation by UV-C treatment[J]. Frontiers in Microbiology, 2020, 11: 572331.

[49] Sagripanti J L, Lytle C D. Estimated inactivation of coronaviruses by solar radiation with special reference to COVID-19[J]. Photochemistry and Photobiology, 2020, 96(4): 731-737.

[50] Rockey N C, Henderson J B, Chin K, et al. Predictive modeling of virus inactivation by UV[J]. Environmental Science & Technology, 2021, 55(5): 3322-3332.

[51] Barancheshme F, Philibert J, Noam-Amar N, et al. Assessment of saliva interference with UV-based disinfection technologies[J]. Journal of Photochemistry and Photobiology B, Biology, 2021, 217: 112168.

[52] 相启森, 董闪闪, 范刘敏, 等. 紫外发光二极管对食品接触材料的杀菌动力学及影响因素[J]. 食品科学, 2022, 43(5): 17-25.

    Xiang Q S, Dong S S, Fan L M, et al. Bactericidal kinetics of ultraviolet C light-emitting diodes against bacteria on food contact materials and factors influencing it[J]. Food Science, 2022, 43(5): 17-25.

[53] Adhikari A, Syamaladevi R M, Killinger K, et al. Ultraviolet-C light inactivation of Escherichia coli O157: H7 and Listeria monocytogenes on organic fruit surfaces[J]. International Journal of Food Microbiology, 2015, 210: 136-142.

[54] 李彩艳, 米庆贺, 冯娟. 短波紫外线辅助治疗儿童疱疹性咽峡炎的效果及安全性评价[J]. 中国实用医刊, 2022, 49(20): 58-61.

    Li C Y, Mi Q H, Feng J. Efficacy and safety evaluation of short-wave ultraviolet radiation in the adjuvant treatment of herpetic angina in children[J]. Chinese Journal of Practical Medicine, 2022, 49(20): 58-61.

[55] 刘丽艳, 李继安, 聂秀真, 等. 短波紫外线治疗小儿疱疹性口腔炎的疗效和安全性[J]. 中国现代医生, 2021, 59(24): 82-85.

    Liu L Y, Li J, Nie X Z, et al. Efficacy and safety of shortwave ultraviolet in the treatment of herpetic stomatitis in children[J]. China Modern Doctor, 2021, 59(24): 82-85.

[56] 杨泉, 蔡翠娟, 郑小寒. 短波紫外线治疗儿童白血病化疗后口腔溃疡患儿的疗效观察[J]. 中国现代药物应用, 2019, 13(10): 61-62.

    Yang Q, Cai C J, Zheng X H. Observation on the therapeutic effect of short-wave ultraviolet radiation on oral ulcer in children with leukemia after chemotherapy[J]. Chinese Journal of Modern Drug Application, 2019, 13(10): 61-62.

[57] 胡福澄. 短波联合紫外线照射辅治疗小儿肺炎的效果[J]. 当代医学, 2018, 24(21): 151-152.

    Hu F C. Short wave combined with ultraviolet irradiation for treatment of pediatric pneumonia[J]. Contemporary Medicine, 2018, 24(21): 151-152.

[58] 孙春红, 王晓宁, 姚建娜, 等. 短波紫外线治疗仪治疗造血干细胞移植患者口腔黏膜炎疗效观察[J]. 陕西医学杂志, 2017, 46(2): 236-237.

    Sun C H, Wang X N, Yao J N, et al. Observation on therapeutic effect of short-wave ultraviolet therapeutic instrument on oral mucositis in patients with hematopoietic stem cell transplantation[J]. Shaanxi Medical Journal, 2017, 46(2): 236-237.

[59] 黄玉群, 黎宁, 刘廷敏. 短波紫外线照射辅助治疗烧伤后残余创面的效果观察[J]. 广东医学, 2017, 38(16): 2496-2497, 2501.

    Huang Y Q, Li N, Liu T M. Observation on the effect of short-wave ultraviolet irradiation in adjuvant treatment of residual burn wounds[J]. Guangdong Medical Journal, 2017, 38(16): 2496-2497, 2501.

[60] 樊利妮, 张净, 王亚丽, 等. 短波紫外线治疗放射性口腔黏膜炎的疗效观察及护理[J]. 现代临床护理, 2016, 15(3): 26-28.

    Fan L N, Zhang J, Wang Y L, et al. Curative effect of UVB radiation treatment on inflammation of radioactive oral mucosa[J]. Modern Clinical Nursing, 2016, 15(3): 26-28.

[61] 王洁. 紫外线照射治疗急性药物性静脉炎的疗效观察[J]. 中国实用神经疾病杂志, 2015, 18(10): 83-84.

    Wang J. Observation on therapeutic effect of ultraviolet irradiation on acute drug-induced phlebitis[J]. Chinese Journal of Practical Neruous Diseases, 2015, 18(10): 83-84.

[62] 陈蓉. 短波紫外线治疗仪联合护理干预在卵巢癌化疗后口腔黏膜炎患者中的应用效果[J]. 医疗装备, 2021, 34(18): 174-175.

    Chen R. Application effect of short-wave ultraviolet therapeutic instrument combined with nursing intervention in patients with oral mucositis after chemotherapy of ovarian cancer[J]. Medical Equipment, 2021, 34(18): 174-175.

[63] 张囡囡, 邱娥, 张颜芳. 短波紫外线辅助治疗造血干细胞移植后口腔黏膜炎的临床效果分析[J]. 中外医疗, 2020, 39(14): 80-82.

    Zhang N N, Qiu E, Zhang Y F. Analysis of clinical effects of short-wave ultraviolet-assisted treatment of oral mucositis after hematopoietic stem cell transplant[J]. China & Foreign Medical Treatment, 2020, 39(14): 80-82.

[64] 朱咏梅. 短波紫外线照射联合常规清创换药在剖宫产术后切口愈合不良患者中的应用[J]. 中国民康医学, 2019, 31(7): 89-90.

    Zhu Y M. Application of short-wave ultraviolet radiation combined with routine debridement and dressing change in patients with poor wound healing after cesarean section[J]. Medical Journal of Chinese People’s Health, 2019, 31(7): 89-90.

[65] 唐梦雨, 张丽艳, 齐永杰, 等. 阿昔洛韦加短波紫外线联合磁疗治疗带状疱疹132例[J]. 陕西医学杂志, 2013, 42(4): 487-488.

    Tang M Y, Zhang L Y, Qi Y J, et al. Treatment of 132 cases of herpes zoster with acyclovir plus short-wave ultraviolet radiation combined with magnetic therapy[J]. Shaanxi Medical Journal, 2013, 42(4): 487-488.

[66] Buonanno M, Stanislauskas M, Ponnaiya B, et al. 207-nm UV light-a promising tool for safe low-cost reduction of surgical site infections. II: in‑vivo safety studies[J]. PLoS One, 2016, 11(6): e0138418.

[67] Buonanno M, Ponnaiya B, Welch D, et al. Germicidal efficacy and mammalian skin safety of 222-nm UV light[J]. Radiation Research, 2017, 187(4): 483-491.

[68] Kaidzu S, Sugihara K, Sasaki M, et al. Evaluation of acute corneal damage induced by 222-nm and 254-nm ultraviolet light in Sprague-Dawley rats[J]. Free Radical Research, 2019, 53(6): 611-617.

[69] Yamano N, Kunisada M, Kaidzu S, et al. Long-term effects of 222-nm ultraviolet radiation C sterilizing lamps on mice susceptible to ultraviolet radiation[J]. Photochemistry and Photobiology, 2020, 96(4): 853-862.

[70] Narita K, Asano K, Morimoto Y, et al. Disinfection and healing effects of 222-nm UVC light on methicillin-resistant Staphylococcus aureus infection in mouse wounds[J]. Journal of Photochemistry and Photobiology B, Biology, 2018, 178: 10-18.

[71] Narita K, Asano K, Morimoto Y, et al. Chronic irradiation with 222-nm UVC light induces neither DNA damage nor epidermal lesions in mouse skin, even at high doses[J]. PLoS One, 2018, 13(7): e0201259.

[72] Ponnaiya B, Buonanno M, Welch D, et al. Far-UVC light prevents MRSA infection of superficial wounds in vivo[J]. PLoS One, 2018, 13(2): e0192053.

[73] Goh J C, Fisher D, Hing E C H, et al. Disinfection capabilities of a 222 nm wavelength ultraviolet lighting device: a pilot study[J]. Journal of Wound Care, 2021, 30(2): 96-104.

[74] Woods J A, Evans A, Forbes P D, et al. The effect of 222-nm UVC phototesting on healthy volunteer skin: a pilot study[J]. Photoimmunology & Photomedicine, 2015, 31(3): 159-166.

[75] Fukui T, Niikura T, Oda T, et al. Exploratory clinical trial on the safety and bactericidal effect of 222-nm ultraviolet C irradiation in healthy humans[J]. PLoS One, 2020, 15(8): e0235948.

竹涛, 付顺江, 谢蔚, 徐欢. 短波紫外线的消杀机制与影响因素[J]. 中国激光, 2023, 50(9): 0907209. Tao Zhu, Shunjiang Fu, Wei Xie, Huan Xu. UVC Sterilization Mechanism and Influencing Factors[J]. Chinese Journal of Lasers, 2023, 50(9): 0907209.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!