激光生物学报, 2016, 25 (6): 553, 网络出版: 2017-01-23  

甘油及甲醇补料策略对毕赤酵母表达猪α-干扰素的影响

Effects of Glycerol and Methanol Supplementation on Porcine Interferon α (PIFN-α) Expression of Pichia Pastoris
作者单位
1 山东省科学院生物研究所, 山东 济南 250014
2 山东省生物传感器重点实验室, 山东 济南 250014
3 山东省科学院能源研究所, 山东 济南 250014
摘要
本文研究了甘油及甲醇补料策略对重组毕赤酵母细胞生长及猪α-干扰素(pIFN-α)表达的影响。结果表明, 甘油采取不同的补料策略, 以及甲醇浓度控制于不同水平时, 细胞生长速度不同, pIFN-α抗病毒活性水平也明显不同。高密度发酵阶段, 甘油采用指数方式流加控制时, 相较于40 g/L/h、10 g/L/h, 恒速流加组的细胞浓度最先达最高水平132 g/L, 后一直保持稳定, 且发酵液中几乎无残留甘油; 与之相应的pIFN-α抗病毒活性水平最高。诱导表达阶段, 甲醇浓度须控制并恒定于12 g/L时, pIFN-α抗病毒活性最高水平能达到5.95×106 IU/mL, 而当甲醇浓度稳定于3.5 g/L、16.0 g/L、或者浓度波动较大(10.2~13.8 g/L)时, pIFN-α抗病毒活性均远低于最高水平。
Abstract
In this paper, effects of the feeding strategy of glycerol and methanol on Pichia pastoris growth and pIFN-α expression were investigated. The results showed that cell growth rate and antiviral activity of pIFN-α were both different under different glycerol feeding rates and methanol concentrations. In the exponential phase, which was fed by exponential method with glycerol, cell concentration reached the highest yield of 132 g/L more quickly than fed by glycerol with constant flow as 40 g/L/h and 10 g/L/h, the cell concentration also remained stable and there was almost no glycerol left in the broth; And the corresponding antiviral activity of pIFN-α was the highest to the highest cell concentration. During the induced expression phase, only when the methanol concentration was stabilized at 12 g/L, the antiviral activity of pIFN-α could reached 5.95×106 IU/mL. While the methanol concentration was at 3.5 g/L or 16.0 g/L, or ranged from 10.2 g/L to 13.8 g/L, antiviral activity of pIFN-α was much less than the highest production of 5.95×106 IU/mL.
参考文献

[1] 金虎. 毕赤酵母高效发酵生产猪α干扰素过程的优化与代谢调控(D).无锡: 江南大学, 2011.

    JIN Hu. Fermentation optimization and metabolic regulation of porcine interferon-α expression by recombinant[D]. Wuxi, Jiangnan University, 2011.

[2] MACAULEY P S, FAZENDA M L, MCNEIL B, et al. Heterologous protein production using the Pichia pastoris expression system[J]. Yeast, 2005, 22: 249-270.

[3] CEREGHINO J L, CREGG J M. Heterologous protein expression in the methylotrophic yeast Pi chia pastoris[J]. FEMS Microbiol Rev, 2000, 24(1): 45- 66.

[4] 汪志浩, 张东旭, 李江华, 等.混合碳源流加对重组毕赤酵母生产碱性果胶酶的影响[J].生物工程学报, 2009, 25(12): 1955-1961.

    WANG Zhihao, ZHANG Dongxu, LI Jianghua, et al. Effects of mixed carbon sources in cultivation of recombinant Pichia pastoris for polygalacturonate lyase production[J]. Chin J Biotech, 2009, 25(12): 1955-1961.

[5] PENG L S, ZHONG X F, OU J X, et al. High level secretory production of recombinant bovine enterokinase light chain by Pichia pastoris[J]. J Biotechnol, 2004, 108: 185-192.

[6] CHINSANGARAM J, KOSTER M, GRUBMAN M J. Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase[J]. J Virol, 2001, 12: 5498-5503.

[7] 方曙光, 储炬, 黄立, 等. 甘油控制项策略对重组毕赤酵母表达瑞替普酶(reteplase)的影响[J]. 工业微生物, 2007, 37(5): 33-37.

    FANG Shuguang, CHU Ju, HUANG Li, et al. Effects of glycerol feeding strategies on production of recombinant reteplase from a methylotrophic yeast Pichia pastoris[J].Industrial Microbiology, 2007, 37 (5): 33-37.

[8] CURVERS S, BRIXIUS P, KLAUSER T, et al. Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing, Part 1. Fermentation[M]. Biotechnol Prog, 2001, 17: 495-502.

[9] ZHANG W H, BEVINS M A, PLANTZ B A, et al. Modeling Pichia pastoris growth on methanol and optimizing the production of a recombinant protein, the heavy-chain frag-ment C of Botulinum neurotoxin, Serotype A[J]. Biotechnol Bioeng, 2000, 70: 1-8.

[10] CHEN Y, KROL J, CINO J, et al. Continuous production of thrombomodulin from a Pichia pastoris fermentation[J]. J Chem Tech Biotechnol, 1996, 67: 143-148.

[11] 周万里, 张金玲, 朱思荣, 等. 基于生物参数在线检测的谷氨酸发酵动力学研究[J]. 食品与机械, 2014, 30(6): 14-17.

    ZHOU Wanli, ZHANG Jinling, ZHU Sirong, et al. Research on fermentation dynamics of glutamic acid by biological parameters on-line detection[J]. Ood and Machinery, 2014, 30(6): 14-17.

[12] LEE C Y, LEE S J, JUNG K H, et al. High dissolved oxygen tension enhances heterologous protein expression by recombinant Pichia pastoris[J]. Process Biochem, 2003, 38: 1147-1154.

[13] 邓兵兵, 方宏清, 薛冲, 等. 甲醇营养性酵母高密度培养过程中甲醇和乙醇的GC快速检测[J]. 工业微生物, 2001, 31(2) : 26-29.

    DENG Bingbing, FANG Hongqing, XUE Chong, et al. G C rapid analysis of methanol and ethanol during high cell density culture of recombinant methylotrophic yeast. Industrial Microbiology[J]. Industrial Microb, 2001, 31(2) : 26-29.

[14] 国家药典委员会. 中华人民共和国药典[M]. 北京: 化学工业出版社, 2005, 343-344.

    Chinese Pharmacopoeia Committee. Pharmacopoeia of People’s Republic of China[M]. Beijing: Chemical Industry Press, 2005: 343-344.

[15] 王彦彬, 崔保安, 陈红英, 等. 猪干扰素α 在昆虫细胞中分泌表达及其抗病毒活性检测[J]. 中国农业科学, 2009, 42(4): 1435-1441.

    WANG Yanbin, CUI Baoan, CHEN Hongying, et al. Secreted expression of procine interferon-alpha in insect cells and its antiviral activity detection[J]. Scientia Agricultura Sinica, 2009, 42(4): 1435-1441.

[16] LEE C Y, NAKANOA A, SHIOMI N, et al. Effects of subst rate feed rates on heterologous protein expression by Pichia p astoris in DO-stat fed-batch fermentation[J]. Enzyme Microb Technol, 2003, 33(2): 358-365.

[17] ZHANG W, BEVINS M A, PLANT Z B A, et al. Modeling Pichia pastor is growth on methanol and optimizing the product ion of a recomb-inant protein, the heavy- chain f ragment C of botulinum neurotoxin, serotype A[J]. Biotechnol Bioeng, 2000, 70(1) : 1-8.

[18] CREGG J M, VEDVICK T S, RASCHKE W C. Recent advances in the expression of foreign genes in Pichia pastoris[J]. Biotechnology , 1993, 11: 905- 910.

[19] BRIERLEY R A, DAVIS G R, HOLTZ G C. Production of insulin-like growth factor-1 in methylotrophic yeasts cells[J]. Biotechnology Advance, 1997, 15(15): 801-802.

[20] CEREGHINO J L, CREGG J M. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microb Rev, 2000, 24: 45-66.

[21] SCHENK J, BALAZS K, JUNGO C, et al. Influence of specific growth rate on specific productivity and glycosylation of a recombinant advidin produced by a Pichia Pastoris Mut+ strain[J]. Biotechnol Bioeng, 2007, 99 (2): 368-377.

[22] KATAKURA Y, ZHANG W H, ZHUANG G Q, et al. Effect of methanol concentration on the production of human beta2-glycoprotein I domain V by a recombinant Pichia pastoris: A simple system for the control of methanol concentration using a semiconductor Gas Sensor[J]. J Ferment Bioeng, 1998, 86: 482-487.

[23] SINHA J, PLANTZ B A, ZHANG W, et al. Improved production of recombinant ovine interferon-τ by Mut+ strain of Pichia pastoris using an optimized methanol feed profile[J]. Biotechnol Prog, 2003, 19: 794-802.

[24] CHIRUVOLU V, CREGG J M, MEAGHER M M. Recombinant protein production in an alcohol oxidase-defective strain of Pichia pastoris in fedbtach fermentations[J]. Enzyme Microb Technol, 1997, 21: 277-283.

王丙莲, 冯东, 梁晓辉, 史建国, 刘仲汇. 甘油及甲醇补料策略对毕赤酵母表达猪α-干扰素的影响[J]. 激光生物学报, 2016, 25(6): 553. WANG Binglian, FENG Dong, LIANG Xiaohui, SHI Jianguo, LIU Zhonghui. Effects of Glycerol and Methanol Supplementation on Porcine Interferon α (PIFN-α) Expression of Pichia Pastoris[J]. Acta Laser Biology Sinica, 2016, 25(6): 553.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!