人工晶体学报, 2023, 52 (6): 1128, 网络出版: 2023-08-13  

蓝宝石晶体湿法刻蚀各向异性研究与机理分析

Anisotropy and Mechanism of Wet Etching of Sapphire Crystal
作者单位
1 南京工业职业技术大学机械工程学院, 南京 210000
2 东南大学机械工程学院, 南京 210000
摘要
当前蓝宝石各向异性刻蚀规律还没有获得完整揭示, 其刻蚀微结构演化过程和形貌结构很难实现准确预测和控制, 给蓝宝石衬底图案化结构加工成型和质量控制带来很大的挑战。本研究基于蓝宝石全晶面刻蚀速率实验数据, 详细分析了其微结构刻蚀成型过程和刻蚀机理, 并对比分析了刻蚀条件对蓝宝石刻蚀微结构和表面形貌的影响规律, 实验结果表明: 适当提高刻蚀温度可以提高刻蚀效率, 但会引起表面质量的下降; 以磷酸为代表的弱电解质类作为刻蚀缓冲剂能够有效提高刻蚀结构面质量; (275±10) ℃, 98%H2SO4∶85%H3PO4(体积配比)=3∶1刻蚀溶液可以获得最优的刻蚀速率和表面质量。
Abstract
Due to the fact that the current mechanism of anisotropic wet etching of sapphire has not been fully revealed, it is difficult to accurately predict and control the evolution process and morphology of its etching microstructure, which brings great challenges to the processing and quality control of patterned structures on sapphire substrates. In this paper, based on the experimental data of sapphire crystal plane etching rates, the etching process and etching mechanism of its microstructure were analyzed in detail, and the influence of the change of etching conditions on the sapphire etching microstructure and surface morphology was compared and analyzed. The experimental results show that: the etching efficiency can be improved by appropriately increasing the etching temperature, but the surface quality will be reduced; weak electrolytes represented by phosphoric acid can be used as etching buffers to improve the quality of etched structural surfaces; the (275±10) ℃, 98%H2SO4∶85%H3PO4 (volume ratio)=3∶1 is the optimal etching solution, which can obtain the best etching rate and surface quality.
参考文献

[1] ZHANG H, XING Y, GOSLVEZ M A, et al. Removal probability function for kinetic Monte Carlo simulations of anisotropic etching of silicon in alkaline etchants containing additives[J]. Sensors and Actuators A: Physical, 2015, 233: 451-459.

[2] XING Y, GOSLVEZ M, SATO K, et al. Evolutionary determination of kinetic Monte Carlo rates for the simulation of evolving surfaces in anisotropic etching of silicon[J]. J Micromech Microeng, 2012, 22: 085020.

[3] GOSLVEZ M A, CHENG D, NIEMINEN R M, et al. Apparent activation energy during surface evolution by step formation and flow[J]. New Journal of Physics, 2006, 8(11): 269.

[4] WANG J, GUO L W, JIA H, et al. Fabrication of patterned sapphire substrate by wet chemical etching for maskless lateral overgrowth of GaN[J]. Journal of The Electrochemical Society, 2006, 153(3): C182-C185, 2006

[5] GROSSE A, GREWE M, FOUCKHARDT H. Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices[J]. Journal of Micromechanics and Microengineering, 2001, 11(3): 257-262.

[6] CHEN Y C, LIN B W, HSU W C, et al. The formation of smooth facets on wet-etched patterned sapphire substrate[J]. ECS Journal of Solid State Science and Technology, 2014, 3: R5-R8.

[7] GAO Z D, WANG Q J, ZHANG Y, et al. Etching study of poled lithium tantalate crystal using wet etching technique with ultrasonic assistance[J]. Optical Materials, 2008, 30(6): 847-850.

[8] LIN Y C, ONO T, ESASHI M. Fabrication and characterization of micromachined quartz-crystal cantilever for force sensing[J]. J Micromech Microeng, 2005, 15: 2426.

[9] GOSLVEZ M, FERRANDO N, XING Y, et al. Simulating anisotropic etching of silicon in any etchant: evolutionary algorithm for the calibration of the continuous cellular automaton[J]. Journal of Micromechanics and Microengineering, 2011, 21: 065017.

[10] FERRANDO N, GOSLVEZ M A, COLM R J. Evolutionary continuous cellular automaton for the simulation of wet etching of quartz[J]. Journal of Micromechanics and Microengineering, 2012, 22(2): 025021.

[11] CHENG D, SATO K, SHIKIDA M, et al. Development of quartz etching database and 3-D micromachining simulation system[C]//MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717). October 19-22, 2003, Nagoya, Japan. IEEE, 2003: 281-285.

[12] DWIKUSUMA F, SAULYS D, KUECH T F. Study on sapphire surface preparation for III-nitride heteroepitaxial growth by chemical treatments[J]. Journal of the Electrochemical Society, 2002, 149(11): G603.

[13] 幸 研, 张 辉, 李 源. 用于半球试件湿法刻蚀各向异性速率测试的可调整式夹具: CN104924234B[P]. 2016-11-23.

[14] 蔡鹏鹏. 石英各向异性湿法刻蚀特性及模拟研究[D]. 南京: 东南大学, 2016.

[15] 幸 研, 朱 鹏, 倪中华, 等. 多次掩模湿法腐蚀硅微加工过程的蒙特卡罗仿真[J]. 机械工程学报, 2009, 45(1): 239-243.

[16] 郭志越.单晶蓝宝石湿法刻蚀机理及表面形貌研究[D].南京: 东南大学,1998.

[17] 王树桥, 幸 研, 田 秘, 等. 混合进化算法的Metropolis蒙特卡罗MEMS单晶硅湿法刻蚀工艺模型[J]. 机械工程学报, 2013, 49(5): 167-172.

[18] ZHANG H, XING Y, ZHANG J, et al. Evolutionary kinetic Monte Carlo method for the simulation of anisotropic etching of Z-cut, at-cut and BT-cut quartz[C]//2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS). June 18-22, 2017, Kaohsiung, Taiwan, China. IEEE, 2017: 1308-1311.

[19] TANG B, SHIKIDA M, SATO K, et al. Study of surfactant-added TMAH for applications in DRIE and wet etching-based micromachining[J]. J Micromech Microeng, 2010, 20: 065008.

张辉, 钱珺, 洪莉莉. 蓝宝石晶体湿法刻蚀各向异性研究与机理分析[J]. 人工晶体学报, 2023, 52(6): 1128. ZHANG Hui, QIAN Jun, HONG Lili. Anisotropy and Mechanism of Wet Etching of Sapphire Crystal[J]. Journal of Synthetic Crystals, 2023, 52(6): 1128.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!