应用激光, 2021, 41 (1): 173, 网络出版: 2021-12-13   

圆柱基体半径对激光熔覆成形质量的影响

Effects of Cylindrical Substrate Radius on Laser Cladding Forming Quality
作者单位
福建工程学院机械与汽车工程学院, 福建 福州 350118
摘要
针对激光熔覆制备化妆棉模切刀具基体半径优选问题, 采用单因素试验方法, 研究圆柱基体半径对“曲面基体曲线轨迹”熔覆层形貌及内部质量的影响规律。结果表明:适当减小圆柱基体半径有利于改善熔覆层成形形貌, 改善表面粗糙程度;熔覆效率随圆柱基体半径增大呈减小趋势;熔覆层气孔率随圆柱基体半径增大而呈增大趋势;圆柱基体半径越大, 晶粒越细小, 分布越均匀, 相应的硬度越高, 熔覆层最高硬度可达基体的3.79倍;圆柱基体半径为40 mm时, 截面形貌、熔覆效率、气孔率及组织性能最佳。研究结果为化妆棉模切刀具等“曲面基体曲线轨迹”激光熔覆成形质量的研究提供了理论依据。
Abstract
For the optimization of the substrate radius of cosmetic cotton die-cutting tools produced by laser cladding, a single-factor test method was used to study the influence of the cylindrical substrate radius on the morphology and internal quality of cladding layers of the "curvilinear path trajectory on curved substrate". The results demonstate that the morphology and surface roughness of cladding layers are improved by reducing the radius of the cylindrical substrate appropriately. The cladding efficiency decreases as the radius of the cylindrical substrate increases; while the porosity of cladding layers increases with the increase of the radius, a larger radius of the cylindrical substrate produces smaller, more evenly-distributed grains and a higher hardness of cladding layers. with the highest hardness reaching 3.79 times of that of the substrate; as the radius increases to 40 mm, the cross-sectional morphology, cladding efficiency, porosity and microstructure properties become the best. The research results provide a theoretical basis for studies of the quality of laser cladding of “curvilinear path trajectory on curved substrate” for cosmetic cotton die-cutting tools and the like.
参考文献

[1] ZHOU S F, LEI J B, DAI X Q, et al. A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 17-27.

[2] SALONITIS K, D’ALVISE L, SCHOINOCHORITIS B, et al. Additive manufacturing and post-processing simulation: laser cladding followed by high speed machining[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(9-12): 2401-2411.

[3] CHAKRABORTY S S, DUTTA S. Estimation of dilution in laser cladding based on energy balance approach using regression analysis[J]. Sādhanā, 2019, 44(6): 1-6.

[4] COURBON C, SOVA A, VALIORGUE F, et al. Near surface transformations of stainless steel cold spray and laser cladding deposits after turning and ball-burnishing[J]. Surface and Coatings Technology, 2019,371:235-244.

[5] LIU J L, YU H J, CHEN C Z, et al. Research and development status of laser cladding on magnesium alloys: A review[J]. Optics and Lasers in Engineering, 2017, 93: 195-210.

[6] KOVALEV O B, BEDENKO D V, ZAITSEV A V. Development and application of laser cladding modeling technique: From coaxial powder feeding to surface deposition and bead formation[J]. Applied Mathematical Modelling, 2018, 57: 339-359.

[7] ARIAS-GONZLEZ F, DEL VAL J, COMESAA R, et al. Fiber laser cladding of nickel-based alloy on cast iron[J]. Applied Surface Science, 2016, 374: 197-205.

[8] ZENG X, LI Z, XI F F, et al. Material removal characteristic of laser cladding cobalt-based alloy in the photochemical process[J]. Metals, 2019, 9(6): 657.

[9] BAX B, RAJPUT R, KELLET R, et al. Systematic evaluation of process parameter maps for laser cladding and directed energy deposition[J]. Additive Manufacturing, 2018, 21: 487-494.

[10] SHI J J, ZHU P, FU G Y, et al. Geometry characteristics modeling and process optimization in coaxial laser inside wire cladding[J]. Optics & Laser Technology, 2018, 101: 341-348.

[11] XI W C, SONG B X, ZHAO Y, et al. Geometry and dilution rate analysis and prediction of laser cladding[J]. The International Journal of Advanced Manufacturing Technology, 2019,103(9-12):4695-4702.

[12] WANG X, SUN W, CHEN Y, et al. Research on trajectory planning of complex curved surface parts by laser cladding remanufacturing[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(5-8): 2397-2406.

[13] 崔权维, 孙文磊, 黄勇. 曲面光斑面积变化模型及其对熔覆质量的影响[J]. 表面技术, 2018, 47(11): 225-232.

[14] 黄海博, 孙文磊, 张冠, 等. 基于NURBS曲面的汽轮机叶片激光熔覆再制造路径规划[J]. 中国表面工程, 2018, 31(05): 175-183.

[15] LIAN G F, ZHANG H, ZHANG Y, et al. Optimizing processing parameters for multi-track laser cladding utilizing multi-response grey relational analysis[J]. Coatings, 2019, 9(6): 356.

[16] LIAN G F, ZHANG H, ZHANG Y, et al. Investigation of geometric characteristics in curved surface laser cladding with curve path[J]. Metals, 2019, 9(9): 947.

[17] 李海波. 倾斜基体上的激光熔覆层形貌研究[D]. 大连:大连理工大学, 2017.

[18] ZHANG N, LIU W W, DENG D W, et al. Effect of electric-magnetic compound field on the pore distribution in laser cladding process[J]. Optics & Laser Technology, 2018, 108: 247-254.

[19] ZHOU S F, ZENG X Y, HU Q W, et al. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free realization[J]. Applied Surface Science, 2008, 255(5): 1646-1653.

[20] MAZAR ATABAKI M, MA J, LIU W, et al. Pore formation and its mitigation during hybrid laser/arc welding of advanced high strength steel[J]. Materials & Design, 2015, 67: 509-521.

[21] LE T N, LO Y L. Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process[J]. Materials & Design, 2019, 179: 107866.

[22] XU J J, RONG Y M, HUANG Y, et al. Keyhole-induced porosity formation during laser welding[J]. Journal of Materials Processing Technology, 2018, 252: 720-727.

[23] KHAIRAL L AH S A, ANDERSON A T, RUBENCHIK A, et al. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones[J]. Acta Materialia, 2016, 108: 36-45.

[24] ZHOU C Y, ZHAO S S, WANG Y B, et al. Mitigation of pores generation at overlapping zone during laser cladding[J]. Journal of Materials Processing Technology, 2015, 216: 369-374.

[25] MUVVALA G, PATRA KARMAKAR D, NATH A K. Online assessment of TiC decomposition in laser cladding of metal matrix composite coating[J]. Materials & Design, 2017, 121: 310-320.

[26] EMAMIAN A, CORBIN S F, KHAJEPOUR A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe-TiC composite coatings[J]. Surface and Coatings Technology, 2010, 205(7): 2007-2015.

[27] LEI Y W, SUN R L, TANG Y, et al. Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings[J]. Optics & Laser Technology, 2012, 44(4): 1141-1147.

[28] HAN T F, XIAO M, ZHANG Y, et al. Effect of Cr content on microstructure and properties of Ni-Ti-xCr coatings by laser cladding[J]. Optik, 2019, 179: 1042-1048.

练国富, 曹强, 张浩, 肖石洪. 圆柱基体半径对激光熔覆成形质量的影响[J]. 应用激光, 2021, 41(1): 173. Lian Guofu, Cao Qiang, Zhang Hao, Xiao Shihong. Effects of Cylindrical Substrate Radius on Laser Cladding Forming Quality[J]. APPLIED LASER, 2021, 41(1): 173.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!