光散射学报, 2023, 35 (3): 217, 网络出版: 2023-11-17  

光散射中的anapole态: 理论、结构以及应用

Anapole States in Light Scattering: Theory, Structures, and Applications
作者单位
1 郑州航空工业管理学院材料学院, 河南郑州, 450046
2 郑州大学物理学院(微电子学院), 河南郑州, 450001
摘要
光散射中的anapole态是纳米光子学领域的一种独特的光学现象, 可以用Mie理论以及多极展开理论进行分析。对于最常见的一阶电anapole态, 其可以看做是由笛卡尔坐标系下电偶极矩和环偶极矩的干涉相消产生, 具有典型的远场散射抑制和近场增强性能。本文首先对anapole态的基本概念和理论进行阐述, 其次对激发anapole态的微纳结构进行总结, 最后结合anapole态独特的光学特性, 对其在近场增强、非线性光学、激光等方面潜在的光子学应用和最新研究进展进行了讨论和展望。
Abstract
The anapole state in scattering is a unique optical phenomenon in the field of nanophotonics, which can be analyzed by Mie theory and multipole expansion. For the most common first-order electric anapole, it can be explained by the destructive interference of Cartesian electric dipole and toroidal dipole, with typical far-field scattering suppression and near-field enhancement. In this paper, we describe the basic concept and theory of anapole state firstly, and then summarize the micro-nano structures which support anapole states. Finally in combination with the unique optical properties of anapole states, the potential photonics applications and recent research progress of anapole states in fields such as near-field enhancements, nonlinear optics and lasers are discussed and prospected.
参考文献

[1] BARYSHNIKOVA K V, SMIRNOVA D A, LUK’YANCHUK B S, et al. Optical anapoles: concepts and applications[J]. Advanced Optical Materials, 2019, 7(14): 1801350.

[2] YANG Y Q, BOZHEVOLNYI S I. Nonradiating anapole states in nanophotonics: from fundamentals to applications[J]. Nanotechnology, 2019, 30(20): 204001.

[3] SAADABAD R M, HUANG L J, EVLYUKHIN A B, et al. Multifaceted anapole: from physics to applications[J]. Optical Materials Express, 2022, 12(5): 1817-1837.

[4] ZEL’DOVICH I B. Electromagnetic interaction with parity violation[J]. Soviet Physics JETP, 1958, 6(6): 1184-1186.

[5] TALEBI N, GUO S R, VAN AKEN P. Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance[J]. Nanophotonics, 2018, 7(1): 93-110.

[6] WOOD C S, BENNETT S C, CHO D, et al. Measurement of parity nonconservation and an anapole moment in cesium[J]. Science, 1997, 275(5307): 1759-63.

[7] DUBOVIK V M, CHESHKOV A A. Form-factors and multipoles in electromagnetic interactions[J]. Soviet Physics JETP, 1965, 24.

[8] DUBOVIK V M, CHESHKOV A A. Multipole expansion in classical and quantum field theory and radiation[J]. Soviet Journal of Particles and Nuclei, 1975, 5(3): 318-337.

[9] HAXTON W C. Atomic parity violation and the nuclear anapole moment[J]. Science, 1997, 275(5307): 1753.

[10] CEULEMANS A, CHIBOTARU L F, FOWLER P W. Molecular anapole moments[J]. Physical Review Letters, 1998, 80(9): 1861.

[11] NAUMOV I I, BELLAICHE L, FU H X. Unusual phase transitions in ferroelectric nanodisks and nanorods[J]. Nature, 2004, 432(7018): 737-740.

[12] KAELBERER T, FEDOTOV V A, PAPASIMAKIS N, et al. Toroidal dipolar response in a metamaterial[J]. Science, 2010, 330(6010): 1510-1512.

[13] AHMADIVAND A, SEMMLINGER M, DONG L, et al. Toroidal dipole-enhanced third harmonic generation of deep ultraviolet light using plasmonic meta-atoms[J]. Nano Letters, 2018, 19(1): 605-611.

[14] HASSANFIROOZI A, HUANG P S, HUANG S H, et al. A toroidal-Fano-resonant metasurface with optimal cross-polarization efficiency and switchable nonlinearity in the near-infrared[J]. Advanced Optical Materials, 2021, 9(21): 2101007.

[15] HASSANFIROOZI A, CHENG Y C, HUANG S H, et al. Toroidal-assisted generalized Huygens’ sources for highly transmissive plasmonic metasurfaces[J]. Laser & Photonics Reviews, 2022, 16(6): 2100525.

[16] AHMADIVAND A, GERISLIOGLU B, MANICKAM P, et al. Rapid detection of infectious envelope proteins by magnetoplasmonic toroidal metasensors[J]. ACS Sensors, 2017, 2(9): 1359-1368.

[17] GUPTA M, SRIVASTAVA Y K, SINGH R. A toroidal metamaterial switch[J]. Advanced Materials, 2018, 30(4): 1704845.

[18] AHMADIVAND A, GERISLIOGLU B, RAMEZANI Z. Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors[J]. Nanoscale, 2019, 11(27): 13108-13116.

[19] YEZEKYAN T, ZENIN V A, BEERMANN J, et al. Anapole states in gap-surface plasmon resonators[J]. Nano Letters, 2022, 22(15): 6098-6104.

[20] HERNáNDEZ-SARRIA J J, OLIVEIRA O N, JR., et al. Numerical simulations of double-well optical potentials in all-dielectric nanostructures for manipulation of small nanoparticles in aqueous media[J]. ACS Applied Nano Materials, 2023, 6(2): 1405-1412.

[21] GRINBLAT G, LI Y, NIELSEN M P, et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk[J]. ACS nano, 2017, 11(1): 953-960.

[22] CUI T J, SMITH D R, LIU R. Metamaterials theory, design, and applications[Z]. Springer. 2010.

[23] HOLLOWAY C L, KUESTER E F, GORDON J A, et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials[J]. IEEE Antennas and Propagation Magazine, 2012, 54(2): 10-35.

[24] FEDOTOV V A, ROGACHEVA A V, SAVINOV V, et al. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials[J]. Scientific Reports, 2013, 3(1): 2967.

[25] HULST H C V D. Light scattering by small particles[M]. New York: Dover, 1981.

[26] BORN M, WOLF E. Principles of optics[M]. 7th ed. Cambridge: Cambridge University Press, 1999.

[27] 王金虎, 蔡嘉晗, 谢槟泽,等. 基于Mie散射的带电粒子散射特性的研究 [J]. 光散射学报, 2021, 33(01): 65-71.(WANG J H, CAI J H, XIE B Z, et al. Study on the scattering characteristics of charged particles based on Mie scattering[J].The Journal of Light Scattering, 2021, 33(01):65-71.

[28] LUK’YANCHUK B, PANIAGUA-DOMíNGUEZ R, KUZNETSOV A I, et al. Hybrid anapole modes of high-index dielectric nanoparticles[J]. Physical Review A, 2017, 95(6): 063820.

[29] WU P C, LIAO C Y, SAVINOV V, et al. Optical anapole metamaterial[J]. ACS Nano, 2018, 12(2): 1920-1927.

[30] ALAEE R, ROCKSTUHL C, FERNANDEZ-CORBATON I. An electromagnetic multipole expansion beyond the long-wavelength approximation[J]. Optics Communications, 2018, 407: 17-21.

[31] FLAMBAUM V V, MURRAY D W. Anapole moment and nucleon weak interactions[J]. Physical Review C, 1997, 56(3): 1641.

[32] FAN Y C, WEI Z Y, LI H Q, et al. Low-loss and high-Q planar metamaterial with toroidal moment[J]. Physical Review B, 2013, 87(11): 115417.

[33] MIROSHNICHENKO A E, EVLYUKHIN A B, YU Y F, et al. Nonradiating anapole modes in dielectric nanoparticles[J]. Nature Communications, 2015, 6: 8069.

[34] ZENIN V A, EVLYUKHIN A B, NOVIKOV S M, et al. Direct amplitude-phase near-field observation of higher-order anapole states[J]. Nano Letters, 2017, 17(11): 7152-7159.

[35] WANG R, DAL NEGRO L. Engineering non-radiative anapole modes for broadband absorption enhancement of light[J]. Optics Express, 2016, 24(17): 19048-19062.

[36] YANG Y Q, ZENIN V A, BOZHEVOLNYI S I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures[J]. ACS Photonics, 2018, 5(5): 1960-1966.

[37] LIU S D, WANG Z X, WANG W J, et al. High Q-factor with the excitation of anapole modes in dielectric split nanodisk arrays[J]. Optics Express, 2017, 25(19): 22375-22387.

[38] ALGORRI J F, ZOGRAFOPOULOS D C, FERRARO A, et al. Ultrahigh-quality factor resonant dielectric metasurfaces based on hollow nanocuboids[J]. Optics Express, 2019, 27(5): 6320-6330.

[39] TIAN S, WANG J Q, SUN S, et al. Strong field enhancement and hot spot manipulation based on anapole state in Si disk-ring metasurface[J]. Results in Physics, 2023, 49: 106485.

[40] OSPANOVA A K, STENISHCHEV I V, BASHARIN A A. Anapole mode sustaining silicon metamaterials in visible spectral range[J]. Laser & Photonics Reviews, 2018, 12(7).

[41] 王兆华, 高万芳, 张秋艳. 基于金属-介质-金属银纳米环阵列结构的光吸收特性 [J]. 光散射学报, 2022, 34(04): 273-277.(WANG Z H, GAO W F, ZHANG Q Y. The Optical Absorption Properties of the Structure based on Metal-dielectric-metal Silver Nanoring Arrays[J].The Journal of Light Scattering, 2022, 34(04):273-277.

[42] 岑栋湛, 郑业雄, 李嘉志, 等. Au膜-WSe_2复合结构的发光特性研究[J].光散射学报, 2021,33(02):165-170.(CEN D Z, ZHENG Y X, LI J Z, et al. The Fluorescence Properties of Au Film-Monolayer WSe2 Heterostructure[J].The Journal of Light Scattering, 2021,33(02):165-170.

[43] SHIBANUMA T, GRINBLAT G, ALBELLA P, et al. Efficient third harmonic generation from metal-dielectric hybrid nanoantennas[J]. Nano letters, 2017, 17(4): 2647-2651.

[44] XU L, RAHMANI M, ZANGENEH KAMALI K, et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator[J]. Light: Science & Applications, 2018, 7(1): 44.

[45] OSPANOVA A K, LABATE G, MATEKOVITS L, et al. Multipolar passive cloaking by nonradiating anapole excitation[J]. Scientific Reports, 2018, 8(1): 12514.

[46] TUZ V R, EVLYUKHIN A B. Polarization-independent anapole response of a trimer-based dielectric metasurface[J]. Nanophotonics, 2021, 10(17): 4373-4383.

[47] PAN G M, SHU F Z, WANG L, et al. Plasmonic anapole states of active metamolecules[J]. Photonics Research, 2021, 9(5): 822-828.

[48] BASHARIN A A, KAFESAKI M, ECONOMOU E N, et al. Dielectric metamaterials with toroidal dipolar response[J]. Physical Review X, 2015, 5(1): 011036.

[49] GHAHREMANI M, HABIL M K, ZAPATA-RODRIGUEZ C J. Anapole-assisted giant electric field enhancement for surface-enhanced coherent anti-Stokes Raman spectroscopy[J]. Scientific Reports, 2021, 11(1): 10639.

[50] SUN S, HE M Y, MAO Y, et al. Anapole manipulation in tailored Si nanocubes for near-field enhancement and high Q?factor resonance[J]. ACS Applied Nano Materials, 2022, 5(10): 14833-14840.

[51] CONTEDUCA D, BRUNETTI G, PITRUZZELLO G, et al. Exploring the limit of multiplexed near-field optical trapping[J]. ACS Photonics, 2021, 8(7): 2060-2066.

[52] SABRI L, HUANG Q, LIU J N, et al. Design of anapole mode electromagnetic field enhancement structures for biosensing applications[J]. Optics Express, 2019, 27(5): 7196-7212.

[53] WU J Z, LI Z H, LI M W, et al. Plasmonic refractive index sensing enhanced by anapole modes in metal-dielectric nanostructure array[J]. Journal of Optics, 2021, 23(3): 035002.

[54] ALGORRI J F, ZOGRAFOPOULOS D C, FERRARO A, et al. Anapole modes in hollow nanocuboid dielectric metasurfaces for refractometric sensing[J]. Nanomaterials, 2018, 9(1): 30591642.

[55] GRINBLAT G, LI Y, NIELSEN M P, et al. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode[J]. Nano letters, 2016, 16(7): 4635-4640.

[56] YIN Y, YAO J, YE L F, et al. Tailoring third harmonic generation from anapole mode in a metal-dielectric hybrid nanoantenna[J]. IEEE Photonics J, 2021, 13(4): 3000106.

[57] 董文龙, 刘璐琪. 拉曼光谱在二维材料微观结构表征中的研究进展 [J]. 光散射学报, 2021, 33(01): 1-15.(DONG W L, LIU L Q. Recent Advances of Raman Spectroscopy in Structural Characterization of Two-dimensional Materials[J]. The Journal of Light Scattering, 2021,33(01):1-15.

[58] 杨芷兰, 朱越洲, 张月皎, 等. 表面增强拉曼光谱在燃料电池与锂电池机理研究中的应用 [J]. 光散射学报, 2023, 35(02): 97-107. (YANG Z L, ZHU Y Z, ZHANG Y J, et al. Surface-Enhanced Raman Spectroscopy Study in the Reaction Process of Fuel Cells and Lithium Battery[J]. The Journal of Light Scattering, 2023, 35(02):97-107.

[59] 孟治材, 林东岳, 杨良保. 表面增强拉曼光谱方法在细菌检测中的研究进展 [J]. 光散射学报, 2023, 35(02): 142-149.(MENG Z C, LIN D Y, YANG L B. Research Progress of Surface-enhanced Raman Spectroscopy in Bacterial Detection[J]. The Journal of Light Scattering, 2023,35(02):142-149.

[60] BARANOV D G, VERRE R, KARPINSKI P, et al. Anapole-enhanced intrinsic Raman scattering from silicon nanodisks[J]. ACS Photonics, 2018, 5(7): 2730-2736.

[61] ZHANG T Y, CHE Y, CHEN K, et al. Anapole mediated giant photothermal nonlinearity in nanostructured silicon[J]. Nature Communications, 2020, 11: 3027.

[62] PANOV A V. Optical Kerr nonlinearity of arrays of all-dielectric high-index nanodisks in the vicinity of the anapole state[J]. Optics Letters, 2020, 45(11): 3071-3074.

[63] GRINBLAT G, ZHANG H, NIELSEN M P, et al. Efficient ultrafast all-optical modulation in a nonlinear crystalline gallium phosphide nanodisk at the anapole excitation[J]. Science advances, 2020, 6(34): eabb3123.

[64] TOTERO GONGORA J S, MIROSHNICHENKO A E, KIVSHAR Y S, et al. Anapole nanolasers for mode-locking and ultrafast pulse generation[J]. Nature Communications, 2017, 8: 15535.

[65] TRIPATHI A, KIM H R, TONKAEV P, et al. Lasing action from anapole metasurfaces[J]. Nano Letters, 2021, 21(15): 6563-6568.

[66] MAZZONE V, TOTERO GONGORA J S, FRATALOCCHI A. Near-field coupling and mode competition in multiple anapole systems[J]. Applied Sciences, 2017, 7(6): 542.

[67] HUANG T C, WANG B X, ZHANG W B, et al. Ultracompact energy transfer in anapole-based metachains[J]. Nano Letters, 2021, 21(14): 6102-6110.

[68] FENG T H, XU Y, ZHANG W, et al. Ideal magnetic dipole scattering[J]. Physical Review Letters, 2017, 118(17): 173901.

[69] DU K, LI P, GAO K, et al. Strong coupling between dark plasmon and anapole modes[J]. Journal of Physical Chemistry Letters, 2019, 10(16): 4699-4705.

[70] LIU S-D, FAN J-L, WANG W-J, et al. Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-j-aggregate heterostructures[J]. Acs Photonics, 2018, 5(4): 1628-1639.

[71] LI R, HE M Y, WANG J Q, et al. Ultranarrow perfect absorber with linewidth down to 1 nm based on optical anapole mode[J]. Results in Physics, 2022, 37: 105484.

[72] HE M Y, WANG J Q, SUN S, et al. Improved strong field enhancement and ultranarrow perfect absorption based on anapole mode in slotted Si nanodisk metamaterial[J]. Results in Physics, 2022, 40: 105809.

[73] TIAN J, LUO H, YANG Y, et al. Active control of anapole states by structuring the phase-change alloy Ge2Sb2Te5[J]. Nature communications, 2019, 10(1): 396.()

田硕, 王俊俏, 郜雅, 梁二军, 丁佩. 光散射中的anapole态: 理论、结构以及应用[J]. 光散射学报, 2023, 35(3): 217. TIAN Shuo, WANG Junqiao, GAO Ya, LIANG Erjun, DING Pei. Anapole States in Light Scattering: Theory, Structures, and Applications[J]. The Journal of Light Scattering, 2023, 35(3): 217.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!