作者单位
摘要
1 郑州航空工业管理学院材料学院, 河南郑州, 450046
2 郑州大学物理学院(微电子学院), 河南郑州, 450001
光散射中的anapole态是纳米光子学领域的一种独特的光学现象, 可以用Mie理论以及多极展开理论进行分析。对于最常见的一阶电anapole态, 其可以看做是由笛卡尔坐标系下电偶极矩和环偶极矩的干涉相消产生, 具有典型的远场散射抑制和近场增强性能。本文首先对anapole态的基本概念和理论进行阐述, 其次对激发anapole态的微纳结构进行总结, 最后结合anapole态独特的光学特性, 对其在近场增强、非线性光学、激光等方面潜在的光子学应用和最新研究进展进行了讨论和展望。
anapole态 Mie理论 超材料 近场增强 光学非线性 纳米激光器 anapole state Mie theory metamaterial near-field enhancement optical nonlinearity nanolaser 
光散射学报
2023, 35(3): 217
刘宁 1,2,3周谷禹 4杨夕 1,2,3徐纪鹏 1,2,3[ ... ]朱志宏 1,2,3
作者单位
摘要
1 国防科技大学 前沿交叉学科学院,湖南 长沙 410073
2 国防科技大学 新型纳米光电信息材料与器件湖南省重点实验室,湖南 长沙 410073
3 国防科技大学 南湖之光实验室,湖南 长沙 410073
4 中国卫星海上测控部,江苏 江阴 214400
高性能的片上纳米激光器对通信、传感以及量子等领域的发展有着至关重要的意义。纳米激光器中高的光学限制因子可以保证更大的模式增益,实现更低的激光器阈值。首先阐明了借助物理气相沉积和原子层沉积制备Si3N4/WS2/Al2O3三明治型纳米激光器阵列的工艺流程;构建了该纳米激光器的仿真模型,在仿真模型中对实际结构进行了简化并分析了Al2O3覆盖层厚度T、Si3N4微盘直径D和厚度H对光学限制因子的影响。光学限制因子随着Al2O3覆盖层T以及Si3N4微盘直径D的增加有先增加后减小的趋势,Si3N4微盘厚度H的减小也可以显著增加激光器的光学限制因子;最后展示了器件的荧光以及扫描电子显微镜的表征结果。该工作为集成光学芯片中可规模制备的高性能纳米激光器打下了良好基础。
纳米光子学 纳米激光器 结构仿真 微纳加工 二维材料 物理气相沉积 nanophotonics nanolaser structural simulation micro-nano processing two-dimensional material physical vapor deposition 
红外与激光工程
2023, 52(6): 20230196
作者单位
摘要
1 南京大学 现代工程与应用科学学院、光热调控研究中心,南京 210093
2 浙江工商大学 信息与电子工程学院(萨塞克斯人工智能学院),杭州 310018
金属表面等离激元是光与金属表面自由电子集体振荡耦合形成的一种表面电磁模式,具有突破衍射极限的光传输能力和纳米尺度的电磁能量局域效应。然而,亚波长、高局域的金属表面等离激元也同时呈现出能量损耗较高的特性,这使得等离激元光子器件的实用化仍然面临严峻挑战。碱金属作为等离激元领域的新材料,具有众多优异的性质,使之成为突破贵金属(金和银)光频损耗极限可能的材料体系之一。总结了金属表面等离激元的基本光学性质及其研究进展,在当前等离激元损耗研究的基础上,重点归纳了碱金属等离激元损耗的理论分析方法,并分析了碱金属等离激元的实验进展与当前需要解决的问题,为碱金属等离激元学的进一步发展提供了思路。
碱金属 等离激元 损耗 纳米激光器 旋涂法 Alkali metals Plasmons Loss Nanolaser Spin coating procedure 
光子学报
2022, 51(5): 0551309
作者单位
摘要
1 杭州电子科技大学智能微传感器与微系统教育部工程研究中心, 浙江 杭州 310018
2 杭州电子科技大学电子信息学院, 浙江 杭州 310018
3 杭州电子科技大学卓越学院, 浙江 杭州 310018
4 杭州电子科技大学通信工程学院, 浙江 杭州 310018
纳米光学是光子学与纳米技术交叉产生的一个新的前沿基础方向,可以使人们在纳米尺度上操控光与物质的相互作用以及探索新的物理现象。纳米激光器是一种新型光源,有关它的研究是纳米光学领域的一个重要分支。由于其尺度特性,并且对光有着很高的限制性,近年来关于纳米激光器的研究吸引着越来越多科研工作者的注意。从激光器的微型化角度出发,综述了该领域近年来取得的一些令人鼓舞的进展。首先,对近年来成功实现的各类新型激光器及其特点进行了简述;其次,对激光器在微纳尺度出现的新物理问题进行了分析,并阐述其最新进展;最后,对纳米激光器在实现应用过程中存在的一些技术挑战进行介绍和分析。
激光光学 纳米光学 纳米激光器 微型化 物理问题 技术挑战 
中国激光
2020, 47(7): 0701013
智婷 1陶涛 2刘斌 2,*张荣 2,3
作者单位
摘要
1 南京邮电大学电子与光学工程学院、微电子学院, 江苏 南京 210023
2 南京大学电子科学与工程学院, 江苏 南京 210046
3 厦门大学, 福建 厦门 361005
激光技术的发展推动了现代科学与技术的进步,改变了人类的生活。其中微型化激光光源成为目前的研究热点之一。得益于金属等离激元的光场强局域化作用,等离激元纳米激光器不仅能够获得突破光学衍射极限的超小物理尺寸,而且可以实现大调制速度以及极小的激射阈值,从而受到广泛的关注。对国内外等离激元纳米激光器的近期进展进行了综述,从增益介质、金属种类和器件结构三个方面进行对比总结,最后对等离激元纳米激光器的未来发展潜力进行讨论和展望。
激光光学 表面等离激元 纳米激光器 衍射极限 超低阈值 
中国激光
2020, 47(7): 0701010
作者单位
摘要
燕山大学电气工程学院, 河北 秦皇岛 066004
设计一种包含顶角经过圆角处理的金属脊和特定三角形空气间隙层的混合表面等离子激元波导结构, 这种特定三角形结构和其他材料的组合有效提高了纳米激光器的性能。应用有限元法, 借助于COMSOL Multiphysics软件分别构建二维平面和三维体积模型, 使用模态分析模块对该波导结构的波导特性与激光器特性进行分析。结果表明, 当工作波长为1550 nm时, 所设计波导的光场约束可以达到较好的亚深波长水平, 同时保持较大的传输长度。该波导结构可以实现表面等离子体激元模式和纳米线模式之间的超强耦合, 耦合强度最高可以达到0.96, 传播长度可以达到28047 nm。将该结构应用于激光器, 通过调整波导设计参数获得了高质量因子、低能量损耗、低阈值极限、超小的有效模式体积。与单一三角形空气间隙结构相比, 在相同的参数下, 所设计的结构具有更强的光场限制能力和微腔束缚能力。该结构有望应用于片上互连、光子集成电路、光学存储、光信号处理等领域。
激光光学 光栅 混合表面等离子体 纳米激光器 有限元法 通信波长 
中国激光
2018, 45(4): 0401013
尤婷 1,2,*吴飞 3董伟 3
作者单位
摘要
1 衢州学院 电气与信息工程学院, 浙江 衢州324000
2 上海大学 机电工程与自动化学院, 上海200072
3 燕山大学 电气工程学院, 河北 秦皇岛066044
为了实现纳米激光器的性能优化, 设计了一种基于纳米线、半圆形氟化镁、三角形空气槽和金属脊结构的纳米激光器模型。模型中耦合在低折射率电介质层中的SPP模式和纳米线波导可以在低折射率间隙下像电容器那样存储光能, 从而使低折射率的空气槽场强明显增大。应用有限元法在COMSOL Multiphysics软件下, 分析了该纳米激光器模型的电场分布、模式特性、品质因数和增益阈值随着设计结构几何参数变化的规律, 通过各部分折线图的综合分析来得出模型性能的数据。分析表明: 该模型的光场约束能力较强且传播损耗较低, 其中归一化面积最小可达到0.004 8, 有效传输损耗最小可达到0.002。波导模场区域和限制因素表明, 该激光器模型可以实现输出光场的亚波长约束。该模型基本实现了低增益阈值、低传输损耗和高品质因数的要求。
纳米激光器 表面等离子体 模式特性 增益阈值 品质因数 有限元 nanolaser surface plasmon mode properties threshold quality factor finite element 
发光学报
2018, 39(2): 188
作者单位
摘要
1 东北大学秦皇岛分校控制工程学院, 河北 秦皇岛 066004
2 燕山大学电气工程学院, 河北 秦皇岛 066004
设计了一种带有金属脊和低折射率介质夹层的新型混合表面等离子体波导结构, 利用有限元法对该结构进行了数值仿真。 COMSOL Multiphysics软件是一款基于有限元法模拟真实物理现象的仿真软件。 在COMSOL Multiphysics软件平台上, 构建该结构的三维模型, 使用模态分析和频域分析模块, 研究了其电场分布、 归一化模式面积、 传输长度、 增益阈值、 品质因数。 结果表明: 在工作波长为370 nm时, 所设计波导的光场约束可达到较好的深亚波长水平, 同时保持大的传输长度。 提出的带有金属脊结构与平坦金属层结构相比, 波导特性更好。 将该结构应用于纳米激光器, 由基模和纵模反映出, 激光器内光场分布稳定且集中在极小的面积内。 在波导特性良好的情况下, 该激光器可保持较低的增益阈值和较高的谐振腔品质因数。 综合考虑, 选取最优尺寸为r=80 nm, d=45 nm, 此时有效模式面积为0.005 1λ2, 传输长度为1 668 nm, 增益阈值为1.46×10-6 m-1, 品质因子74.5。 最后, 在最优尺寸下, 通过仿真得到了该结构的发射光谱, 其发射波长为360 nm, 输出电能比输入电能增强了3 100倍。 该结构为小型化和集成化的纳米设备提供了技术支持, 在生物医学和光通信等领域有广泛的应用前景。
表面等离子体 有限元法 波导 纳米激光器 紫外波 Surface plasmons Finite-element method Waveguides Nanolasers Ultraviolet 
光谱学与光谱分析
2018, 38(1): 15
作者单位
摘要
1 燕山大学 电气工程学院,河北 秦皇岛 066004
2 东北大学秦皇岛分校 控制工程学院,河北 秦皇岛 066004
设计了一种包含圆柱形纳米线、空气间隙和半圆顶金属脊结构的低阈值纳米激光器.通过有限元法对激光器的模式特性、品质因数以及增益阈值进行数值计算,并研究了这些特性因子随结构几何参数(空气间隙、金属脊宽度和纳米线半径)的变化情况.结果表明,通过对参数进行调整,激光器的性能得到了显著优化.在最优参数下,增益阈值可达0.47 μm-1,传输损耗仅为0.018.本文设计的纳米激光器能够实现低阈值的亚波长激射和低损耗传输,在生物医学、光通信等领域有广泛的应用前景,可为小型化和集成化的纳米设备提供技术支持.
表面等离子体 有限元法 增益介质 模式特性 纳米激光器 Surface plasmons Finite-element method Gain medium Modal properties Nanolasers 
光子学报
2017, 46(8): 0814002
作者单位
摘要
燕山大学电气工程学院, 河北 秦皇岛 066004
设计了一种带圆角的金属脊和低折射率空气间隙的新型混合表面等离子体波导结构。基于有限元法建立数学模型, 在工作波长为489 nm的可见光波段研究了该波导的电场分布、归一化模式面积、传输距离、品质因子和珀塞尔因子随金属脊曲率半径的变化情况。结果表明, 调整结构参数可使波导实现超深亚波长的光场限制, 同时获得较大的SPPs辐射增强倍数。在最优几何参数(纳米线半径为95 nm, 金属脊曲率半径为20 nm)下, 波导有效模式面积为0.0037λ2, 品质因子为268, 珀塞尔因子为65, 增益阈值为 0.2768 μm-1, 其表征激光增强值为69800。该激光器谐振腔具有超强的局域能力和激光增强能力, 可以实现超深亚波长的低阈值激射。
激光器 表面等离子体 纳米激光器 波导 
中国激光
2017, 44(10): 1001005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!