光子学报, 2016, 45 (3): 0314009, 网络出版: 2016-04-01   

LD泵浦的被动调Q Yb:YAG薄片激光器实验研究

Research of LD-pumped Passively Q-switched Yb:YAG Thin Disk Laser
王旭 1,2,*程光华 1孙哲 1
作者单位
1 中国科学院西安光学精密机械研究所 瞬态光学与光子技术国家重点实验室, 西安 710119
2 中国科学院大学, 北京 100049
摘要
采用中心波长为940 nm的激光二极管泵浦,实现了Yb:YAG薄片的Cr4+:YAG被动调Q 激光输出.Yb:YAG薄片掺杂Yb3+离子浓度为10%,厚度为500 μm.理论上计算了Yb:YAG薄片在直接水冷方式与不同厚度SiC冷却方式下的温度分布.实验中采用厚度800 μm的SiC冷却方式,获得了最高功率2.8 W的1 030 nm连续激光输出,输出功率相比直接水冷方式提高了40%.通过Degnan理论优化了被动调Q晶体Cr4+:YAG的初始透过率和输出耦合镜,采用初始透过率为93%的Cr4+:YAG晶体和透过率为10%的输出耦合镜,在800 μm SiC冷却方式下,获得了平均输出功率1.95 W、单脉冲能量1.2 mJ、脉冲宽度74 ns、重复频率1.6 kHz的稳定调Q脉冲输出,斜效率为18.1%.光束质量因子M2x=1.622,M2y=1.616.
Abstract
Using 940 nm diode laser as pumping source, a passively Q-switched Yb:YAG thin disk laser by Cr4+:YAG was realized. The Yb:YAG disk with 500 μm thickness was employed,the Yb3+ atom fraction is 10%.The distribution of temperature in Yb:YAG disk with direct water cooling and SiC cooling with different thickness was theoretically simulated, respectively. The maximum output power of 2.8 W at 1 030 nm was obtained with 800 μm SiC cooling, the output power has increased by 40% than that obtained with direct water cooling. The initial transmission of Cr4+:YAG crystal and the output coupling rate were optimized by Degnan′s theory. With the initial transmission of Cr4+:YAG crystal of 93% and the output coupling rate of 10%, a stable pulse train of 1.95 W averaged output power with a pulse energy of 1.2 mJ and pulse width of 74 ns were obtained with 800 μm SiC cooling. The repetition rate is 1.6 kHz, the slope efficiency is 18.1%, and the beam quality M2x=1.622, M2y=1.616.
参考文献

[1] HIROSHI S, HIROHUMI K, TAKUNORI T. >1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser[J]. Optics Express, 2008, 16(24):19891-19899.

[2] RAKESH B, TAKUNORI T. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG /Cr4+:YAG microchip laser[J]. Optics Express, 2011, 19(20):19135-19141.

[3] 苏艳丽,罗旭,张学辉,等.重复频率连续可调谐的Cr4+:YAG被动调Q微片激光器[J].红外与激光工程,2014, 43(2): 355-359.

    SU Yan-li, LUO Xu, ZHANG Xue-hui, et al. Repetition rate continuously tunable microchip laser passively Q-switched by Cr4+:YAG[J]. Infrared and Laser Engineering, 2014,43(2):355-359.

[4] HANS W, DAVID S. Low-heat high-power scaling using InGaAs-diode-pumped Yb:YAG lasers[J].IEEE Journal of Quantum Electronics, 1997,3(1):105-116.

[5] SUMIDA D, FAN T. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media[J].Optics Letters, 1994,19(17): 1343-1345.

[6] TSUNEKANE M, TAIRA T. High peak power, passively Q-switched Yb:YAG/Cr:YAG micro-lasers[J].IEEE Quantum Electron,2013, 49(5): 454-461.

[7] DONG J, REN Y. >1 MW peak power, an efficient Yb:YAG/Cr4+:YAG composite crystal passively Q-switched laser[J]. Laser Physics, 2014, 24(5):1-4.

[8] 李小莉,施翔春,石鹏,等. Yb:YAG薄片激光介质的温度效应[J].光学学报,2001,21(10): 1268-1271.

    LI Xiao-li, SHI Xiang-chun, SHI Peng, et al. Temperature effect of Yb:YAG thin disk laser crysta[J]. Acta Qptica Sinica, 2001, 21(10):1268-1271.

[9] 甘安生,李隆,史彭.激光二极管端面泵浦Yb:YAG薄片激光器的热效应[J].光子学报,2008,37(4): 631-635.

    GAN An-sheng, LI Long, SHI Peng. Thermal effect of Yb:YAG slice laser by diode laser end-pmped[J].Acta Photonica Sinica,2008,37(4):631-635.

[10] NEWBURGH G, MICHAEL A, DUBINSKII M. Composite Yb:YAG/ SiC-prism thin disk laser[J]. Optics Express, 2012, 18(16): 17066-17074.

[11] ZHUANG W, CHEN Y, SU K, et al. Performance enhancement of sub-nanosecond diode-pumped passively Q-switched Yb:YAG microchip laser with diamond surface cooling[J].Optics Express,2012,20(20):22602-22608.

[12] ZHU G, ZHU X, WANG M, et al. Analytical model of thermal effect and optical path difference in end-pumped Yb:YAG thin disk laser[J]. Applied Optics, 2014,53(29):6756-6764.

[13] SHANG J, ZHU X, ZHU G. Analytical approach to thermal lensing in end-pumped Yb:YAG thin-disk laser[J]. Applied Optics, 2011, 50(32):6103-6120.

[14] 宋琼阁,程光华,白晶,等.直接水冷的Yb:YAG薄片激光器系统设计与实验研究[J]. 光子学报, 2014, 43(10): 1014001.

    SONG Qiong-ge, CHENG Guang-hua, BAI Jing, et al. System design and research of Yb:YAG thin disk laser with direct cooling arrangement[J]. Acta Photonica Sinica, 2014, 43(10): 1014001.

[15] JOHN J. DEGNAN. Optimization of passively q-switched lasers[J]. IEEE Journal of Quantum Electronics , 1995, 31(11) : 1890-1901.

[16] FINDLAY D, CLAY R. The measurement of internal losses in 4-level lasers[J].Physics Letters,1966 20(3):277-278.

[17] 杨林,黄维玲,丘军林,等.Cr4+ :YAG 被动调Q激光器中受激粒子上转换效应对脉冲的影响研究[J].物理学报,2003,52(10): 2471-2475.

    YANG Lin, HUANG Wei-Ling, QIU Jun-Lin. et al.Influence of energy-transfer upconversion effect on the pulse in diode-pumped Cr:YAG passively Q-switched lasers[J]. Acta Physica Sinica, 2003, 52(10):2471-2475.

王旭, 程光华, 孙哲. LD泵浦的被动调Q Yb:YAG薄片激光器实验研究[J]. 光子学报, 2016, 45(3): 0314009. WANG Xu, CHENG Guang-hua, SUN Zhe. Research of LD-pumped Passively Q-switched Yb:YAG Thin Disk Laser[J]. ACTA PHOTONICA SINICA, 2016, 45(3): 0314009.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!