Journal of Innovative Optical Health Sciences, 2021, 14 (5): 2142006, Published Online: Dec. 6, 2021   

Glycerol effects on optical, weight and geometrical properties of skin tissue

Author Affiliations
1 Saratov State University (National Research University) 83, Astrakhanskaya Str., Saratov 410012, Russia
2 Tomsk State University (National Research University) 36, Lenina Av., Tomsk 634050, Russia
3 Institute of Precise Mechanics and Control of RAS 24, Rabochaya Str., Saratov 410028, Russia
Abstract
Complex study of glycerol effects on the skin tissue was performed. The change in optical, weight and geometrical parameters of the rat skin under the action of the glycerol solutions was studied ex vivo. Possible mechanisms of the skin optical clearing under the action of glycerol solutions of different concentrations were discussed. The results can be helpful for refinement of models developed to evaluate the effective diffusion coefficients of glycerol in tissues.
References

[1] E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, V. V. Tuchin, Optical Clearing of Tissues: Benefits for Biology, Medical Diagnostics and Phototherapy, Handbook on Optical Biomedical Diagnostics, Vol. 2: Methods, Chap. 10, 2nd Edition, V. V. Tuchin, Ed., pp. 565–937, SPIE Press, Bellingham, Washington (2016).

[2] E. A. Genina, L. M. C. Oliveira, A. N. Bashkatov, V. V. Tuchin, Optical Clearing of Biological Tissues: Prospects of Application for Multimodal Malignancy Diagnostics, Multimodal Optical Diagnostics of Cancer, Chap. 3, V. V. Tuchin, J. Popp, V. Zakharov, Eds., pp. 107–132, Springer Nature, Cham (2020).

[3] R. Christoph, B. Schmidt, U. Steinberner, W. Dilla, R. Karinen, Glycerol, in Ullmann's Encyclopedia of Industrial Chemistry, Vol. 17, pp. 77–81, Wiley- VCH Verlag GmbH & Co. KGaA, Weinheim (2012).

[4] J. Jiang, M. Boese, P. Turner, R. K. Wang, "Penetration kinetics of dimethyl sulphoxide and glycerol in dynamic optical clearing of porcine skin tissue in vitro studied by Fourier transform infrared spectroscopic imaging," J. Biomed. Opt. 13, 021105 (2008).

[5] E. A. Genina, A. N. Bashkatov, V. V. Tuchin, "Optical clearing of cranial bone," Adv. Opt. Technol. 2008, 267867 (2008).

[6] M. A. Fox, D. G. Diven, K. Sra, A. Boretsky, T. Poonawalla, A. Readinger, M. Motamedi, R. J. McNichols, "Dermal scatter reduction in human skin: A method using controlled application of glycerol," Lasers Surg. Med. 41, 251–255 (2009).

[7] X. Wen, Z. Mao, Z. Han, V. V. Tuchin, D. Zhu, "In vivo skin optical clearing by glycerol solutions: Mechanism," J. Biophoton. 3, 44–52 (2010).

[8] H. Zhong, Z. Guo, H. Wei, C. Zeng, H. Xiong, Y. He, S. Liu, "In vitro study of ultrasound and differentconcentration glycerol-induced changes in human skin optical attenuation assessed with optical coherence tomography," J. Biomed. Opt. 15, 036012 (2010).

[9] H. Q. Zhong, Z. Y. Guo, H. J. Wei, C. C. Zeng, H. L. Xiong, Y. H. He, S. H. Liu, "Quantification of glycerol diffusion in human normal and cancer breast tissues in vitro with optical coherence tomography," Laser Phys. Lett. 7, 315–320 (2010).

[10] E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, V. V. Tuchin, "Optical clearing of skin under action of glycerol: Ex vivo and in vivo investigations," Opt. Spectrosc. 109, 225–231 (2010).

[11] T. Yu, X. Wen, V. V. Tuchin, Q. Luo, D. Zhu, "Quantitative analysis of dehydration in porcine skin for assessing mechanism of optical clearing," J. Biomed. Opt. 16, 095002 (2011).

[12] V. D. Genin, D. K. Tuchina, A. J. Sadeq, E. A. Genina, V. V. Tuchin, A. N. Bashkatov, "Ex vivo investigation of glycerol diffusion in skin tissue," J. Biomed. Photon. Eng. 2, 010303 (2016).

[13] T. Yu, Y. Qi, J. Wang, W. Feng, J. Xu, J. Zhu, Y. Yao, H. Gong, Q. Luo, D. Zhu, "Rapid and prodium iodide-compatible optical clearing method for brain tissue based on sugar/sugar-alcohol," J. Biomed. Opt. 21, 081203 (2016).

[14] D. K. Tuchina, A. N. Bashkatov, A. B. Bucharskaya, E. A. Genina, V. V. Tuchin, "Study of glycerol diffusion in skin and myocardium ex vivo under the conditions of developing alloxan-induced diabetes," J. Biomed. Photon. Eng. 3, 020302 (2017).

[15] E. A. Genina, A. N. Bashkatov, Yu. P. Sinichkin, I. Yu. Yanina, V. V. Tuchin, "Optical clearing of biological tissues: Prospects of application in medical diagnostics and phototherapy," J. Biomed. Photon. Eng. 1, 22–58 (2015).

[16] A. Yu. Sdobnov, M. E. Darvin, E. A. Genina, A. N. Bashkatov, J. Lademann, V. V. Tuchin, "Recent progress in tissue optical clearing for spectroscopic application," Spectrochim. Acta A: Mol. Biomol. Spectrosc. 197, 216–229 (2018).

[17] R. Cicchi, F. S. Pavone, D. Massi, D. D. Sampson, "Contrast and depth enhancement in two-photon microscopy of human skin ex vivo by use of optical clearing agents," Opt. Exp. 13, 2337–2344 (2005).

[18] D. Huang, W. Zhang, H. Zhong, H. Xiong, X. Guo, Z. Guo, "Optical clearing of porcine skin tissue in vitro studied by Raman microspectroscopy," J. Biomed. Opt. 17, 015004 (2012).

[19] R. K. Wang, X. Xu, V. V. Tuchin, J. B. Elder, "Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents," JOSA B 18, 948–953 (2001).

[20] M. V. Schulmerich, K. A. Dooley, T. M. Vanasse, S. A. Goldstein, M. D. Morris, "Subsurface and transcutaneous Raman spectroscopy and mapping using concentric illumination rings and collection with a circular fiber optic array," Appl. Spectrosc. 61, 671–678 (2007).

[21] P. A. Timoshina, E. M. Zinchenko, D. K. Tuchina, M. M. Sagatova, O.V. Semyachkina-Glushkovskaya, V. Valery, "Laser speckle contrast imaging of cerebral blood flow of newborn mice at optical clearing," Proc. SPIE 10336, 1033610 (2017).

[22] E. Song, Y. Ahn, J. Ahn, S. Ahn, C. Kim, S. Choi, R. M. Boutilier, Y. Lee, P. Kim, H. Lee, "Optical clearing assisted confocal microscopy of ex vivo transgenic mouse skin," Opt. Laser Technol. 73, 63–76 (2015).

[23] I. Carneiro, S. Carvalho, R. Henrique, R. Oliveira, V. V. Tuchin, "Simple multimodal optical technique for evaluation of free/bound water and dispersion of human liver tissue," J. Biomed. Opt. 22, 125002 (2017).

[24] T. Son, B. Jung, "Cross-evaluation of optimal glycerol concentration to enhance optical clearing efficacy," Skin Res. Technol. 21, 327–332 (2015).

[25] J. Yoon, D. Park, T. Son, J. Seo, J. S. Nelson, B. Jung, "A physical method to enhance transdermal delivery of a tissue optical clearing agent: Combination of microneedling and sonophoresis," Lasers Surg. Med. 42, 412–417 (2010).

[26] I. Carneiro, S. Carvalho, R. Henrique, R. Oliveira, V. V. Tuchin, "Kinetics of optical properties of colorectal muscle during optical clearing," IEEE J. Sel. Top. Quantum. Electron. 25, 7200608 (2019).

[27] E. A. Genina, A. N. Bashkatov, A. A. Korobko, E. A. Zubkova, V. V. Tuchin, I. Yaroslavsky, G. B. Altshuler, "Optical clearing of human skin: Comparative study of permeability and dehydration of intact and photothermally perforated skin," J. Biomed. Opt. 13, 021102 (2008).

[28] V. Hovhannisyan, P.-S. Hu, S.-J. Chen, C.-S. Kim, C.-Y. Dong, "Elucidation of the mechanisms of optical clearing in collagen tissue with multiphoton imaging," J. Biomed. Opt. 18, 046004 (2013).

[29] Z. Mao, D. Zhu, Y. Hu, X. Wen, Z. Han, "Influence of alcohols on the optical clearing effect of skin in vitro," J. Biomed. Opt. 13, 021104 (2008).

[30] A. T. Yeh, B. Choi, J. S. Nelson, B. J. Tromberg, "Reversible dissociation of collagen in tissues," J. Invest. Dermatol. 121, 1332–1335 (2003).

[31] J. M. Hirshburg, K. M. Ravikumar, W. Hwang, A. T. Yeh, "Molecular basis for optical clearing of collagenous tissues," J. Biomed. Opt. 15, 055002 (2010).

[32] E. I. Galanzha, V. V. Tuchin, A. V. Solovieva, T. V. Stepanova, Q. Luo, H. Cheng, "Skin backreflectance and microvascular system functioning at the action of osmotic agents," J. Phys. D: Appl. Phys. 36, 1739–1746 (2003).

[33] G. Vargas, A. Readinger, S. S. Dosier, A. J. Welch, "Morphological changes in blood vessels produced by hyperosmotic agents and measured by optical coherence tomography," Photochem. Photobiol. 77, 541–549 (2003).

[34] D. Zhu, J. Zhang, H. Cui, Z. Mao, P. Li, Q. Luo, "Short-term and long-term effects of optical clearing agents on blood vessels in chick chorioallantoic membrane," J. Biomed. Opt. 13, 021106 (2008).

[35] A. N. Bashkatov, K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, E. A. Genina, V. D. Genin, V. I. Kochubey, E. N. Lazareva, A. B. Pravdin, M. E. Shvachkina, P. A. Timoshina, D. K. Tuchina, D. D. Yakovlev, D. A. Yakovlev, I. Yu. Yanina, O. S. Zhernovaya, V. V. Tuchin, "Measurement of tissue optical properties in the context of tissue optical clearing," J. Biomed. Opt. 23, 091416 (2018).

[36] R. Samatham, K. G. Phillips, S. L. Jacques, "Assessment of optical clearing agents using reflectance- mode confocal scanning laser microscopy," J. Innov. Opt. Health Sci. 3, 183–188 (2010).

[37] P. Schiebener, J. Straub, J. M. H. LeveltSengers, J. S. Gallagher, "Refractive index of water and steam as function of wavelength, temperature and density," J. Phys. Chem. Ref. Data 19, 677–717 (1990).

[38] M. V. Noble, A. B. Garrett, "A thermodynamic study of lead chloride in dioxane-water by means of electromotive force and solubility data at 25; the acetone-, ethanol-, dioxane-, glycerol–water–lead chloride systems," J. Am. Chem. Soc. 66, 231–235 (1944).

[39] D. K. Tuchina, A. N. Bashkatov, E. A. Genina, V. V. Tuchin, "Investigation of the impact of immersion agents on weight and geometric parameters of myocardial tissue in vitro," Biophysics 63, 791– 797 (2018).

[40] V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, SPIE Tutorial Text in Optical Engineering, 3rd Edition, SPIE Press, Washington, Bellingham (2015).

[41] M. L. Sheeley, "Glycerol viscosity tables," Ind. Eng. Chem. 24, 1060–1064 (1932).

[42] J. W. Wiechers, J. C. Dederen, A. V. Rawlings, "Moisturization mechanisms: Internal occlusion by orthorhombic lipid phase stabilizers — a novel mechanism of skin moisturization," Skin Moisturization, Chap. 19, A. V. Rawlings, J. J. Leyden, Eds., pp. 309–321, Taylor and Francis, London (2009).

[43] F. O. Akinkunmi, D. A. Jahn, N. Giovambattista, "Effects of temperature on the thermodynamic and dynamical properties of glycerol-water mixtures: A computer simulation study of three different force fields," J. Phys. Chem. B 119, 6250–6261 (2015).

[44] G. D'Errico, O. Ortona, F. Capuano, V. Vitagliano, "Diffusion coefficients for the binary system glyceroltwater at 25C. A velocity correlation study," J. Chem. Eng. Data 49, 1665–1670 (2004).

[45] N. Cheron, M. Naepels, E. Pluha?ova, D. Laage, "Protein preferential solvation in water: Glycerol mixtures," J. Phys. Chem. B 124, 1424–1437 (2020).

[46] K. V. Berezin, K. N. Dvoretskiy, M. L. Chernavina, A. M. Likhter, V. V. Smirnov, I. T. Shagautdinova, E. M. Antonova, E. Yu. Stepanovich, E. A. Dzhalmuhambetova, V. V. Tuchin, "Molecular modeling of immersion optical clearing of biological tissues," J. Mol. Model. 24, 45 (2018).

[47] E. Youn, T. Son, H.-S. Kim, B. Jung, "Determination of optimal glycerol concentration for optical tissue clearing," Proc. SPIE 8207, 82070J (2012).

[48] R. K. Wang, J. B. Elder, "Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissues," Lasers Surg. Med. 30, 201–208 (2002).

[49] X. Xu, Q. Zhu, "Sonophoretic delivery for contrast and depth improvement in skin optical coherence tomography," IEEE J. Sel. Top. Quant. Electron. 14, 56–61 (2008).

[50] J. Wang, Y. Liang, S. Zhang, Y. Zhou, H. Ni, Y. Li, "Evaluation of optical clearing with the combined liquid paraffin and glycerol mixture," Biomed. Opt. Exp. 2, 2329–2338 (2011).

[51] S. V. Zaitsev, Y. I. Svenskaya, E. V. Lengert, G. S. Terentyuk, A. N. Bashkatov, V. V. Tuchin, E. A. Genina, "Optimized skin optical clearing for optical coherence tomography monitoring of encapsulated drug delivery through the hair follicles," J. Biophoton. 13, e201960020 (2020).

[52] S. Tran, S. Zaytsev, V. Charykova, M. Yusupova, A. Bashkatov, E. Genina, V. Tuchin, W. Blondel, M. Amouroux, "Analysis of image features for the characterization of skin optical clearing kinetics performed on in vivo and ex vivo human skin using Linefield-Confocal Optical Coherence Tomography (LC-OCT)," Proc. SPIE 11553, 115532P (2020).

Vadim D. Genin, Elina A. Genina, Valery V. Tuchin, Alexey N. Bashkatov. Glycerol effects on optical, weight and geometrical properties of skin tissue[J]. Journal of Innovative Optical Health Sciences, 2021, 14(5): 2142006.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!