光谱学与光谱分析, 2023, 43 (3): 984, 网络出版: 2023-04-07  

车载小型DOAS系统获取淮北地区大气污染气体方法研究

Study on the Methods of Collecting Atmospheric Pollution Gases in Huaibei Region by Mobile Mini-DOAS
作者单位
1 淮北师范大学物理与电子信息学院, 安徽 淮北 235000
2 污染物敏感材料与环境修复安徽省重点实验室, 安徽 淮北 235000
摘要
我国城市气体污染物主要包括氮氧化物、 臭氧、 二氧化硫和颗粒物等, 其中NO2和SO2是气体污染物中常见的污染痕量气体, 对地气辐射、 全球气候、 空气质量和人体健康都有着直接或间接的影响。 淮北地区是我国基础能源和重要原料煤炭的生产基地, 长期的煤炭生产使得当地大气环境污染相对更为复杂, 开展快速获取大气污染物浓度是目前研究热点之一。 差分吸收光谱(DOAS)仪是一种光学遥感式光谱设备, 具有稳定、 时间分辨率高、 灵敏度高和不受搭建平台制约等优势特点, 可同时获取多种污染气体的浓度信息。 针对淮北地区复杂的环境污染, 构建了基于移动平台的车载小型差分吸收光谱系统(DOAS), 该系统包括光谱采集系统、 温控系统和GPS定位系统。 利用车载GPS定位系统记录移动过程中的经纬度和车速, 光谱仪放置在恒温系统中, 保障系统测量的精准性。 在实验期间, 首先测试了系统的性能, 规划了走航观测路线, 并将车载DOAS测量结果与地基MAX-DOAS进行对比以验证系统的准确性, 实现了对淮北地区的大气典型污染物的快速、 便捷、 精准监测。 航测期间, 利用QDOAS软件对原始测量光谱进行反演处理, 选取相对干净的光谱作为参考谱, 获取了淮北地区NO2和SO2柱浓度空间分布, 其中NO2的浓度范围为5.09×1015~15.4×1016 molecule·cm-2, SO2的浓度范围为3.53×1015~9.07×1016 molecule·cm-2。 将车载DOAS测量的结果分别与站点地基MAX-DOAS测量结果和卫星(TROPOMI)数据对比, 均具有较好一致性(相关系数R2>0.75)。 外场实验表明构建的车载小型DOAS系统可以准确的获取城市污染气体柱浓度分布, 为确认城市污染气体的源区和校验卫星遥感数据提供一种有效的技术手段。
Abstract
Urban air pollutants in China mainly include nitrogen oxides,ozone,sulfur dioxide and particulate matter. NO2 and SO2 are common trace gases in atmospheric pollutants, which directly or indirectly impact ground air radiation,global climate,air quality and human health.Huaibei region is the production base of basic energy and important raw material coal in China. Local atmospheric pollution has become more complex due to long-term coal production. It is one of the research hot pots to acquire atmospheric pollutant concentration quickly. Differential optical absorption spectrometer(DOAS) is an optical remote sensing spectral equipment,which has the advantages of stability, and high sensitivity and is not restricted by building platform. It can obtain the concentration information of a variety of polluting gases at the same time. Because of the complex environment pollution in Huaibei, this paper constructed a mobile mini differential optical absorption spectroscopy(DOAS) system based on the mobile platform, which includes a spectrum acquisition system, temperature control system and GPS positioning system. The GPS positioning system was used to record the longitude, latitude and speed during the movement. The spectrometer was placed in the constant temperature system to ensure the accuracy of the system measurement. During the experiment, the performance of the system is tested, and the navigation observation route is planned first. The mobile DOAS measurement results are compared with the MAX-DOAS to verify the accuracy of the system to realize the rapid, convenient and accurate monitoring of typical atmospheric pollutants in Huaibei. During the measurement period, QDOAS software was used for inversion processing of the originally measured spectra and the relatively clean is selected as the reference spectrum to obtain the spatial distribution of NO2 and SO2 column concentration in the Huaibei region. The range of NO2 concentration is 0.509×1016~15.4×1016 molecule·cm-2, and that of SO2 is 0.353×1016~9.07×1016 molecule·cm-2. The results of mobile Mini-DOAS measurements were compared with MAX-DOAS measurements and TROPOMI data, which showed good consistency (correlation coefficient R2>0.75). Field experiments show that the mobile Mini-DOAS system can accurately obtain the distribution of urban pollution gas column, providing an effective technical means for confirming the source area of urban atmospheric pollution and verifying satellite remote sensing data.
参考文献

[1] Kang Y Y, Tang G Q, Li Q H, et al. Advances in Atmospheric Sciences, 2021, 38(7): 1188.

[2] Hong Q Q, Liu C, Hu Q H, et al. Journal of Environmental Sciences, 2021, 103(5): 119.

[3] Mou F S, Luo J, Li S W, et al. Chinese Physics B, 2019, 28(8): 199.

[4] Li D R, Wang S S, Xue R B, et al. Atmospheric Chemistry and Physics, 2021, 21: 15447.

[5] Huang Y Y, Li A, Xie P H, et al. Remote Sensing, 2020, 12(16): 2527.

[6] Wu F C, Li A, Xie P H, et al. Sensors, 2017, 17(2): 231.

[7] HUANG Ye-yuan, LI Ang, QIN Min, et al(黄业园, 李 昂, 秦 敏, 等). Acta Optica Sinica(光学学报), 2021, 41(10): 203.

[8] Wu F C, Xie P H, Li A, et al. Atmospheric Chemistry and Physics, 2018, 18(3): 1535.

[9] YANG Dong-shang, ZENG Yi, XI Liang, et al(杨东上, 曾 议, 奚 亮, 等). Acta Optica Sinica(光学学报), 2020, 40(5): 23.

[10] Guo Y Y, Li S W, Mou F S, et al. Chinese Physics B, 2022, 31(1): 014212.

[11] Xu J, Xie P H, Si F Q, et al. Chinese Physics B, 2014, 23(9): 251.

[12] LIU Hao-ran, HU Qi-hou, TAN Wei, et al(刘浩然, 胡启后, 谈 伟, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(1): 11.

[13] MOU Fu-sheng, LI Ang, XIE Pin-hua, et al(牟福生, 李 昂, 谢品华, 等). Acta Optica Sinica(光学学报), 2016, 36(4): 9.

[14] Wang Y, Lampel J, Xie P, et al. Atmospheric Chemistry and Physics, 2017, 17(3): 2189.

[15] Tan W, Liu C, Wang S S, et al. Atmospheric Research, 2020, 245: 105037

[16] Huang Y Y, Li A, Xie P H, et al. Remote Sensing, 2020, 12(16): 2527.

[17] Tan W, Zhao S H, Liu C, et al. Atmospheric Environment, 2019, 200: 228.

张琦锦, 郭映映, 李素文, 牟福生. 车载小型DOAS系统获取淮北地区大气污染气体方法研究[J]. 光谱学与光谱分析, 2023, 43(3): 984. ZHANG Qi-jin, GUO Ying-ying, LI Su-wen, MOU Fu-sheng. Study on the Methods of Collecting Atmospheric Pollution Gases in Huaibei Region by Mobile Mini-DOAS[J]. Spectroscopy and Spectral Analysis, 2023, 43(3): 984.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!