硅酸盐学报, 2023, 51 (6): 1469, 网络出版: 2023-08-13  

Ca0.95?xCu0.05(Na0.05Bi0.05)xMoO4微波介质陶瓷的制备及性能

Preparation and Properties of Ca0.95?xCu0.05(Na0.05Bi0.05)xMoO4 Microwave Dielectric Ceramics
作者单位
安徽建筑大学材料与化学工程学院,合肥 2030601
摘要
随着当下5G和6G技术的高速发展,开发出具有适中的介电常数,较高的品质因数,接近0的谐振频率温度系数的陶瓷已是当下研究的重点。通过固相法制备Ca0.95-xCu0.05(Na0.5Bi0.5)xMoO4微波介质陶瓷,研究烧结温度和组分变化对陶瓷微波介电性能的影响。当烧结温度为640 ℃、x为0.5时综合微波介电性能较好,此时陶瓷的εr=15.8,Qf=21 361 GHz,τf= ?偉d3.8×10?偉d6/℃。通过X射线衍射仪、Raman光谱仪、扫描电子显微镜研究了微波介电性能变化的机理。Ca0.45Cu0.05(Na0.5Bi0.5)0.5MoO4陶瓷与Al电极共烧结果显示有较好的相容性,表明Ca0.95?偉dxCu0.05(Na0.5Bi0.5)xMoO4陶瓷具有作为低温共烧微波介质陶瓷材料的应用潜力。
Abstract
With the rapidly development of 5G and 6G technologies, developing ceramics with a moderate dielectric constant, a high quality factor, and a resonant frequency temperature coefficient close to 0 becomes a research hotspot. A novel series of microwave dielectric ceramics Ca0.95?偉dxCu0.05(Na0.5Bi0.5)xMoO4 were synthesized by a solid-state reaction method. The influences of sintering temperature and component change on the microwave dielectric properties were investigated. The ceramic property was analyzed by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy. The results show that the εr of Ca0.45Cu0.05(Na0.5Bi0.5)0.5MoO4 ceramic with NB content of 0.5 sintered at 640 ℃ is 15.8, Qf is 21 361 GHz, and τf is 3.8×10-6/℃. Also, Ca0.45Cu0.05(Na0.5Bi0.5)0.5MoO4 ceramic is compatible with Al electrode, indicating that Ca0.95-xCu0.05(Na0.5Bi0.5)xMoO4 ceramic has a great potential application as a low-temperature co-fired ceramic material.
参考文献

[1] 吕学鹏, 郑勇, 周斌, 等. 微波介质陶瓷低温共烧技术的研究进展[J]. 材料导报, 2012, 26(23): 146-149.

[2] 郑勇, 刘文俊, 雷文, 等. 微波介质陶瓷制备技术研究进展[J]. 材料导报, 2004(11): 73-76.

[3] 王闳毅, 刘鹏, 魏金生, 等. 低介电常数(Mg1-xYx)2Al4Si5O18陶瓷的制备与微波介电性能[J]. 硅酸盐学报, 2015, 43(9): 1203-1208.

[4] JOSEPH N, VARGHESE J, SIPONKOSKI T, et al. Glass?偉dfree CuMoO4 ceramic with excellent dielectric and thermal properties for ultralow temperature cofired ceramic applications[J]. ACS Sustainable Chem Eng, 2016, 4(10): 5632-5639.

[5] HONG T, HU Y D, BAO S X, et al. Low?偉dtemperature sintering and microwave dielectric properties of CaMoO4 ceramics[J]. J Electron Mater, 2019, 48(2): 972-976.

[6] BAO J, ZHANG Y P, KIMURA H, et al. Crystal structure, chemical bond characteristics, infrared reflection spectrum, and microwave dielectric properties of Nd2(Zr1-xTix)3(MoO4)9 ceramics[J]. J Adv Ceram, 2023, 12(1): 82-92.

[7] GUO J, RANDALL C A, ZHOU D, et al. Correlation between vibrational modes and dielectric properties in (Ca1?傆b3xBi2xΦx)MoO4 ceramics[J]. J Eur Ceram Soc, 2015, 35(16): 4459-4464.

[8] GUO J, ZHOU D, WANG L, et al. Infrared spectra, Raman spectra, microwave dielectric properties and simulation for effective permittivity of temperature stable ceramics AMoO4-TiO2 (a=Ca, Sr)[J]. Dalton Trans, 2013, 42(5): 1483-1491.

[9] ZHOU X, LIU L T, SUN J J, et al. Effects of (Mg1/3Sb2/3)4+ substitution on the structure and microwave dielectric properties of Ce2Zr3(MoO4)9 ceramics[J]. J Adv Ceram, 2021, 10(4): 778-789.

[10] ZHOU D, PANG L X, XIE H D, et al. Crystal structure and microwave dielectric properties of an ultralow?偉dtemperature?偉dfired (AgBi)0.5WO4 ceramic[J]. Eur J Inorg Chem, 2014, 2014(2): 296-301.

[11] ZHOU D, WANG H, WANG Q P, et al. Microwave dielectric properties and Raman spectroscopy of scheelite solid solution [(Li0.5Bi0.5)1?偉dxCax]MoO4 ceramics with ultra?偉dlow sintering temperatures[J]. Funct Mater Lett, 2010, 3(4): 253-257.

[12] HAKKI B W, COLEMAN P D. A dielectric resonator method of measuring inductive capacities in the millimeter range[J]. IRE Trans Microw Theory Tech, 1960, 8(4): 402-410.

[13] LIU Y, GAN L, JIANG J, et al. Microwave dielectric properties of low?偉dtemperature sintered (1?偉dx)CaMoO4?傆bx(Li0.5Y0.5)MoO4 (0.1≤x≤0.8) ceramics[J]. J Mater Sci: Mater Electron, 2022, 33(7): 3566-3575.

[14] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr Sect A, 1976, 32(5): 751-767.

[15] BASIEV T T, SOBOL A A, VORONKO Y K, et al. Spontaneous Raman spectroscopy of tungstate and molybdate crystals for Raman lasers[J]. Opt Mater, 2000, 15(3): 205-216.

[16] Porto S, Scott J, Raman spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4[J]. Phys Rev, 1967(157): 716-719.

[17] XI H H, ZHOU D, XIE H D, et al. Raman spectra, infrared spectra, and microwave dielectric properties of low?偉dtemperature firing [(Li0.5Ln0.5)1?傆bxCax]MoO4 (Ln=Sm and Nd) solid solution ceramics with scheelite structure[J]. J Am Ceram Soc, 2015, 98(2): 587-593.

[18] HAO S Z, ZHOU D, PANG L X. The spectra analysis and microwave dielectric properties of [Ca0.55(Sm1?偉dxBix)0.3]MoO4 ceramics[J]. J Am Ceram Soc, 2019, 102(6): 3103-3109.

[19] PARK H S, YOON K H, KIM E S. Relationship between the bond valence and the temperature coefficient of the resonant frequency in the complex perovskite (Pb1?傆bxCax)[Fe0.5(Nb1?傆byTay)0.5]O3[J]. J Am Ceram Soc, 2001, 84(1): 99-103.

[20] PRENCIPE M, MANTOVANI L, TRIBAUDINO M, et al. The Raman spectrum of diopside: a comparison between ab initio calculated and experimentally measured frequencies[J]. Eur J Mineral, 2012, 24(3): 457-464.

[21] XIAO E C, REN Q, CAO Z K, et al. Phonon characteristics and intrinsic properties of phase_pure CaMoO4 microwave dielectric ceramic[J]. J Mater Sci: Mater Electron, 2020, 31(7): 5686-5691.

[22] 蒋婷. BMT基微波陶瓷改性及在滤波器的应用研究[D]. 成都: 电子科技大学, 2022.

[23] GUO J, ZHOU D, LI Y, et al. Structure-property relationships of novel microwave dielectric ceramics with low sintering temperatures: (Na0.5xBi0.5xCa1?傆bx)MoO4[J]. Dalton Trans, 2014, 43(31): 11888-11896.

[24] PANG L X, ZHOU D, GUO J, et al. Microwave dielectric properties of (Li0.5Ln0.5)MoO4 (Ln=Nd, Er, Gd, Y, Yb, Sm, and Ce) ceramics[J]. J Am Ceram Soc, 2015, 98(1): 130-135.

[25] ZHANG Y H, WU H T. Crystal structure and microwave dielectric properties of La2(Zr1?傆bxTix)3(MoO4)9 (0≤x≤0.1) ceramics[J]. J Am Ceram Soc, 2019, 102(7): 4092-4102.

[26] 毕德显. 电磁场理论[M]. 北京: 电子工业出版社, 1985: 87-88.

[27] ZHANG P, TIAN X, HAO M M, et al. The crystal structure, sintering behavior and microwave dielectric properties of BiZn2PO6 ceramics for ULTCC applications[J]. J Mater Sci: Mater Electron, 2022, 33(7): 3738-3747.

[28] LIAO Q W, LI L X. Structural dependence of microwave dielectric properties of ixiolite structured ZnTiNb2O8 materials: crystal structure refinement and Raman spectra study[J]. Dalton Trans, 2012, 41(23): 6963-6969.

[29] ZHANG P, ZHAO Y G, WANG X Y. The correlations between electronic polarizability, packing fraction, bond energy and microwave dielectric properties of Nd(Nb1?傆bxSbx)O4 ceramics[J]. J Alloys Compd, 2015, 644: 621-625.

[30] KIM E S, KIM S H. Effects of structural characteristics on microwave dielectric properties of (1?傆bx)CaWO4-xLaNbO4 ceramics[J]. J Electroceram, 2006, 17(2): 471-477.

施思嘉, 吴修胜, 金正权, 温红娟, 曹菊芳. Ca0.95?xCu0.05(Na0.05Bi0.05)xMoO4微波介质陶瓷的制备及性能[J]. 硅酸盐学报, 2023, 51(6): 1469. SHI Sijia, WU Xiusheng, JIN Zhengquan, WEN Hongjuan, CAO Jufang. Preparation and Properties of Ca0.95?xCu0.05(Na0.05Bi0.05)xMoO4 Microwave Dielectric Ceramics[J]. Journal of the Chinese Ceramic Society, 2023, 51(6): 1469.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!