人工晶体学报, 2023, 52 (8): 1386, 网络出版: 2023-10-28   

组分阶梯InGaN势垒对绿光激光二极管光电性能的影响

Effect of Composition Step-Graded InGaN Barriers on Photoelectric Performance of Green Laser Diode
作者单位
1 太原理工大学新材料界面科学与工程教育部重点实验室,太原 030024
2 山西浙大新材料与化工研究院,太原 030000
3 太原理工大学材料科学与工程学院,太原 030024
4 陕西科技大学材料原子·分子科学研究所,西安 710021
摘要
为探究不同铟(In)组分InxGa1-xN势垒对绿光激光二极管光电性能的影响,本文采用SiLENSe(simulator of light emitters based on nitride semiconductors)仿真软件对一系列具有不同In组分InxGa1-xN势垒的激光二极管进行研究,结果发现InxGa1-xN势垒中In组分最佳值为3%,此时结构的斜率效率最高,内部光学损耗最低,光学限制因子最大,性能最优。在具有In0.03Ga0.97N势垒的多量子阱结构基础上,设计了一种组分阶梯(composition step-graded, CSG)InGaN势垒多量子阱结构,提高了激光二极管的斜率效率和电光转换效率,增加了光场限制能力。仿真结果表明,当注入电流为120 mA时,具有CSG InGaN势垒的多量子阱结构,电光转换效率从17.7%提高至19.9%,斜率效率从1.09 mW/mA增加到1.14 mW/mA,光学限制因子从1.58%增加到1.62%。本文的研究为制备高功率GaN基绿光激光二极管提供了理论指导和数据支撑。
Abstract
In order to investigate the influence of InxGa1-xN barrier with different indium (In) composition on photoelectric performance of green laser diode, a series of green laser diode with InxGa1-xN barrier of different In composition were simulated by SiLENSe (simulator of light emitters based on nitride semiconductors) software. The results show that the InxGa1-xN barrier structure with 3% In composition has the highest slope efficiency and the lowest internal optical loss, and also show the largest optical confinement factor and the optimum performance. Based on the multiple quantum well structure with In0.03Ga0.97N barrier, the composition step-graded (CSG) InGaN barrier model structure was designed, which effectively improves the slope efficiency and electro-optical conversion efficiency. Moreover, the optical field confinement increase. The simulation results show that at the injection current of 120 mA, the efficiency of electro-optical conversion increases from 17.7% to 19.9% for the multiple quantum well structure with CSG InGaN barrier, the slope efficiency increases from 1.09 mW/mA to 1.14 mW/mA, and the optical confinement factor increases from 1.58% to 1.62%. The study provides theoretical guidance and data support for the preparation of high-power GaN-based green laser diode.
参考文献

[1] TIAN A Q, HU L, ZHANG L Q, et al. Design and growth of GaN-based blue and green laser diodes[J]. Science China Materials, 2020, 63(8): 1348-1363.

[2] LUTGEN S, AVRAMESCU A, LERMER T, et al. Progress of blue and green InGaN laser diodes[C]∥SPIE OPTO. Proc SPIE 7616, Novel in-Plane Semiconductor Lasers Ⅸ, San Francisco, California, USA. 2010, 7616: 89-96.

[3] 李方直, 胡 磊, 田爱琴, 等. GaN基蓝绿光激光器发展现状与未来发展趋势[J]. 人工晶体学报, 2020, 49(11): 1996-2012.

[4] PIPREK J. Analysis of efficiency limitations in high-power InGaN/GaN laser diodes[J]. Optical and Quantum Electronics, 2016, 48(10): 471.

[5] RARING J W, SCHMIDT M C, POBLENZ C, et al. High-efficiency blue and true-green-emitting laser diodes based on non-c-plane oriented GaN substrates[J]. Applied Physics Express, 2010, 3(11): 112101.

[6] CHANG J Y, CHANG Y A, CHEN F M, et al. Improved quantum efficiency in green InGaN light-emitting diodes with InGaN barriers[J]. IEEE Photonics Technology Letters, 2013, 25(1): 55-58.

[7] SIZOV D, BHAT R, ZAH C E. Gallium indium nitride-based green lasers[J]. Journal of Lightwave Technology, 2012, 30(5): 679-699.

[8] KUO Y K, CHANG J Y, TSAI M C, et al. Advantages of blue InGaN multiple-quantum well light-emitting diodes with InGaN barriers[J]. Applied Physics Letters, 2009, 95(1): 011116.

[9] YANG J, ZHAO D G, LIU Z, et al. Suppression the leakage of optical field and carriers in GaN-based laser diodes by using InGaN barrier layers[J]. IEEE Photonics Journal, 2018, 10(4): 1-7.

[10] ZHOU K, IKEDA M, LIU J P, et al. Remarkably reduced efficiency droop by using staircase thin InGaN quantum barriers in InGaN based blue light emitting diodes[J]. Applied Physics Letters, 2014, 105(17): 173510.

[11] RYOU J H, YODER P D, LIU J P, et al. Control of quantum-confined stark effect in InGaN-based quantum wells[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(4): 1080-1091.

[12] 尹瑞梅, 贾 伟, 董海亮, 等. (101)面InGaN量子阱中的静电场反转对蓝光发光二极管光电性能的影响[J]. 光学学报, 2022, 42(21): 2125001.

[13] BEN Y H, LIANG F, ZHAO D G, et al. The role of InGaN quantum barriers in improving the performance of GaN-based laser diodes[J]. Optics & Laser Technology, 2022, 145: 107523.

[14] LU T P, MA Z G, DU C H, et al. Improvement of light power and efficiency droop in GaN-based LEDs using graded InGaN hole reservoir layer[J]. Applied Physics A, 2014, 114(4): 1055-1059.

[15] HOU Y F, ZHAO D G, LIANG F, et al. Characteristics of InGaN-based green laser diodes with additional InGaN hole reservoir layer[J]. Vacuum, 2021, 186: 110049.

[16] LI T, CAO G L, MAO W, et al. Origin of GaN-InGaN-GaN barriers in enhancing the hole injection for InGaN/GaN green light-emitting diodes[J]. Superlattices and Microstructures, 2020, 146: 106649.

[17] MEYAARD D S, LIN G B, SHAN Q F, et al. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes[J]. 2012: JW3L.2.

[18] DAVID A, GRUNDMANN M J, KAEDING J F, et al. Carrier distribution in (0001)InGaNGaN multiple quantum well light-emitting diodes[J]. Applied Physics Letters, 2008, 92(5): 053502.

[19] VURGAFTMAN I, MEYER J R, RAM-MOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. Journal of Applied Physics, 2001, 89(11): 5815-5875.

[20] FIORENTINI V, BERNARDINI F, AMBACHER O. Evidence for nonlinear macroscopic polarization in Ⅲ-Ⅴ nitride alloy heterostructures[J]. Applied Physics Letters, 2002, 80(7): 1204-1206.

[21] HAGER T, BRDERL G, LERMER T, et al. Current dependence of electro-optical parameters in green and blue (AlIn)GaN laser diodes[J]. Applied Physics Letters, 2012, 101(17): 171109.

[22] STRITE S. GaN, AlN, and InN: a review[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1992, 10(4): 1237.

[23] SHIH Y H, CHANG J Y, SHEU J K, et al. Design of hole-blocking and electron-blocking layers in AlxGa1-xN-based UV light-emitting diodes[J]. IEEE Transactions on Electron Devices, 2016, 63(3): 1141-1147.

[24] CHU C S, TIAN K K, CHE J M, et al. On the origin of enhanced hole injection for AlGaN-based deep ultraviolet light-emitting diodes with AlN insertion layer in p-electron blocking layer[J]. Optics Express, 2019, 27(12): A620-A628.

[25] MNATSAKANOV T T, LEVINSHTEIN M E, POMORTSEVA L I, et al. Carrier mobility model for GaN[J]. Solid-State Electronics, 2003, 47(1): 111-115.

[26] KIM D J, MOON Y T, SONG K M, et al. Structural and optical properties of InGaN/GaN multiple quantum wells: the effect of the number of InGaN/GaN pairs[J]. Journal of Crystal Growth, 2000, 221(1/2/3/4): 368-372.

[27] ZHANG Z H, HUANG CHEN S W, ZHANG Y H, et al. Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes[J]. ACS Photonics, 2017, 4(7): 1846-1850.

侯俨育, 董海亮, 贾志刚, 贾伟, 梁建, 许并社. 组分阶梯InGaN势垒对绿光激光二极管光电性能的影响[J]. 人工晶体学报, 2023, 52(8): 1386. HOU Yanyu, DONG Hailiang, JIA Zhigang, JIA Wei, LIANG Jian, XU Bingshe. Effect of Composition Step-Graded InGaN Barriers on Photoelectric Performance of Green Laser Diode[J]. Journal of Synthetic Crystals, 2023, 52(8): 1386.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!