光电工程, 2023, 50 (3): 220326, 网络出版: 2023-05-04  

光响应液滴操控功能表面研究及应用进展

Research and application advances of photo-responsive droplet manipulation functional surface
作者单位
1 西北大学光子与光子技术研究所,陕西 西安 710127
2 浙江大学光电科学与工程学院,浙江 杭州 310007
引用该论文

张琛, 文通, 刘泽志, 高文萍, 王新孔, 李紫钰, 匡翠方, 王凯歌, 白晋涛. 光响应液滴操控功能表面研究及应用进展[J]. 光电工程, 2023, 50(3): 220326.

Chen Zhang, Tong Wen, Zezhi Liu, Wenping Gao, Xinkong Wang, Ziyu Li, Cuifang Kuang, Kaige Wang, Jintao Bai. Research and application advances of photo-responsive droplet manipulation functional surface[J]. Opto-Electronic Engineering, 2023, 50(3): 220326.

参考文献

[1] Xu G C, Gu Z Y, Xu D J, et alCharacteristics of rice leaf surface and droplets deposition behavior on rice leaf surface with different inclination anglesSci Agric Sin201447214280429010.3864/j.issn.0578-1752.2014.21.013

    徐广春, 顾中言, 徐德进, 等稻叶表面特性及雾滴在倾角稻叶上的沉积行为中国农业科学201447214280429010.3864/j.issn.0578-1752.2014.21.013

[2] Chen H W, Zhang P F, Zhang L W, et alContinuous directional water transport on the peristome surface of Nepenthes alataNature20165327858910.1038/nature17189

[3] Cheng Q F, Li M Z, Zheng Y M, et alJanus interface materials: Superhydrophobic air/solid interface and superoleophobic water/solid interface inspired by a lotus leafSoft Matter20117135948595110.1039/c1sm05452j

[4] Lu Y, Sathasivam S, Song J L, et alRobust self-cleaning surfaces that function when exposed to either air or oilScience201534762261132113510.1126/science.aaa0946

[5] Li S H, Huang J Y, Chen Z, et alA review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applicationsJ Mater Chem A201751315510.1039/C6TA07984A

[6] Li X J, Jiang C M, Zhao F N, et alA self-charging device with bionic self-cleaning interface for energy harvestingNano Energy20207310473810.1016/j.nanoen.2020.104738

[7] Sun G, Fang Y, Cong Q, et alAnisotropism of the non-smooth surface of butterfly wingJ Bionic Eng200961717610.1016/S1672-6529(08)60094-3

[8] Mei M, Luo D, Guo P, et alMulti-level micro-/nanostructures of butterfly wings adapt at low temperature to water repellencySoft Matter2011722105691057310.1039/c1sm06347b

[9] Ju J, Zheng Y M, Jiang LBioinspired one-dimensional materials for directional liquid transportAcc Chem Res20144782342235210.1021/ar5000693

[10] Ju J, Bai H, Zheng Y M, et alA multi-structural and multi-functional integrated fog collection system in cactusNat Commun20123124710.1038/ncomms2253

[11] Bai F, Wu J T, Gong G M, et alBiomimetic “cactus spine” with hierarchical groove structure for efficient fog collectionAdv Sci201527150004710.1002/advs.201500047

[12] Parker A R, Lawrence C RWater capture by a desert beetleNature20014146859333410.1038/35102108

[13] Nørgaard T, Dacke MFog-basking Behaviour and water collection efficiency in Namib desert darkling beetlesFront Zool201072310.1186/1742-9994-7-23

[14] Guadarrama-Cetina J, Mongruel A, Medici M G, et alDew condensation on desert beetle skinEur Phys J E2014371110910.1140/epje/i2014-14109-y

[15] Chiou P Y, Moon H, Toshiyoshi H, et alLight actuation of liquid by optoelectrowettingSens Actuators A Phys2003104322222810.1016/S0924-4247(03)00024-4

[16] Huang G Y, Li M X, Yang Q Z, et alMagnetically actuated droplet manipulation and its potential biomedical applicationsACS Appl Mater Interfaces2017921155116610.1021/acsami.6b09017

[17] Lv P, Zhang Y L, Han D D, et alDirectional droplet transport on functional surfaces with superwettabilitiesAdv Mater Interfaces2021812210004310.1002/admi.202100043

[18] Feng L, Li S, Li Y, et alSuper-hydrophobic surfaces: From natural to artificialAdv Mater200214241857186010.1002/adma.200290020

[19] Zhang S N, Huang J Y, Chen Z, et alBioinspired special wettability surfaces: From fundamental research to water harvesting applicationsSmall2017133160299210.1002/smll.201602992

[20] Li S H, Li H J, Wang X B, et alSuper-hydrophobicity of large-area honeycomb-like aligned carbon nanotubesJ Phys Chem B2002106369274927610.1021/jp0209401

[21] Yang J T, Chen J C, Huang K J, et alDroplet manipulation on a hydrophobic textured surface with roughened patternsJ Microelectromech Syst200615369770710.1109/JMEMS.2006.876791

[22] Zheng Y M, Bai H, Huang Z B, et alDirectional water collection on wetted spider silkNature2010463728164064310.1038/nature08729

[23] Ghosh A, Ganguly R, Schutzius T M, et alWettability patterning for high-rate, Pumpless fluid transport on open, non-planar microfluidic platformsLab Chip20141491538155010.1039/C3LC51406D

[24] Li A, Li H Z, Li Z, et alProgrammable droplet manipulation by a magnetic-actuated robotSci Adv202067eaay580810.1126/sciadv.aay5808

[25] Gao A T, Butt H J, Steffen W, et alOptical manipulation of liquids by thermal Marangoni flow along the air−water interfaces of a superhydrophobic surfaceLangmuir202137298677868610.1021/acs.langmuir.1c00539

[26] Malvadkar N A, Hancock M J, Sekeroglu K, et alAn engineered anisotropic Nanofilm with unidirectional wetting propertiesNat Mater20109121023102810.1038/nmat2864

[27] Tian D L, Zhang N, Zheng X, et alFast responsive and controllable liquid transport on a magnetic fluid/Nanoarray composite interfaceACS Nano20161066220622610.1021/acsnano.6b02318

[28] Cheng Z J, Zhang D J, Lv T, et alSuperhydrophobic shape memory polymer arrays with switchable isotropic/anisotropic wettingAdv Funct Mater2018287170500210.1002/adfm.201705002

[29] Rao Q Q, Li A, Zhang J W, et alMulti-functional fluorinated ionic liquid infused slippery surfaces with dual-responsive wettability switching and self-repairingJ Mater Chem A2019752172218310.1039/C8TA08956F

[30] Yang D Q, Piech M, Bell N, et alPhoton control of liquid motion on reversibly photoresponsive surfacesLangmuir20072321108641087210.1021/la701507r

[31] Diguet A, Guillermic R M, Magome N, et alPhotomanipulation of a droplet by the chromocapillary effectAngew Chem Int Ed200948499281928410.1002/anie.200904868

[32] Ichikawa M, Takabatake F, Miura K, et alControlling negative and positive photothermal migration of centimeter-sized dropletsPhys Rev E201388101240310.1103/PhysRevE.88.012403

[33] Kwon G, Panchanathan D, Mahmoudi S R et alVisible light guided manipulation of liquid wettability on photoresponsive surfacesNat Commun2017811496810.1038/ncomms14968

[34] Siewierski L M, Brittain W J, Petrash S, et alPhotoresponsive monolayers containing in-chain azobenzeneLangmuir199612245838584410.1021/la960506o

[35] Ichimura K, Oh S K, Nakagawa MLight-driven motion of liquids on a photoresponsive surfaceScience200028854711624162610.1126/science.288.5471.1624

[36] Berná J, Leigh D A, Lubomska M, et alMacroscopic transport by synthetic molecular machinesSci Mater20054970471010.1038/nmat1455

[37] Wang J, Gao W, Zhang H, et alProgrammable wettability on photocontrolled graphene filmSci Adv201849eaat739210.1126/sciadv.aat7392

[38] Wu S Z, Zhou L L, Chen C, et alPhotothermal actuation of diverse liquids on an Fe3O4-doped slippery surface for electric switching and cell cultureLangmuir20193543139151392210.1021/acs.langmuir.9b02068

[39] Li W, Tang X, Wang L QPhotopyroelectric microfluidicsSci Adv2020638eabc169310.1126/sciadv.abc1693

[40] Bai X, Yong J L, Shan C, et alRemote, selective, and in situ manipulation of liquid droplets on a femtosecond laser-structured superhydrophobic shape-memory polymer by near-infrared lightSci China Chem202164586187210.1007/s11426-020-9940-6

[41] Gao C L, Wang L, Lin Y C, et alDroplets manipulated on photothermal organogel surfacesAdv Funct Mater20182835180307210.1002/adfm.201803072

[42] Smith J D, Dhiman R, Anand S, et alDroplet mobility on lubricant-impregnated surfacesSoft Matter2013961772178010.1039/C2SM27032C

[43] Chaudhury M K, Whitesides G MHow to make water run uphillScience199225650631539154110.1126/science.256.5063.1539

[44] Nikolov A D, Wasan D T, Chengaraa A, et alSuperspreading driven by Marangoni flowAdv Colloid Interface Sci2002961–332533810.1016/S0001-8686(01)00087-2

[45] Jiao Z Z, Zhou H, Han X C, et alPhotothermal responsive slippery surfaces based on laser-structured graphene@PVDF compositesJ Colloid Interface Sci202362958259210.1016/J.JCIS.2022.08.153

[46] Li Q, Wu D H, Guo Z GDrop/bubble transportation and controllable manipulation on patterned slippery lubricant infused surfaces with tunable wettabilitySoft Matter201915346803681010.1039/C9SM01167F

[47] Chen C, Huang Z C, Jiao Y L, et alIn situ reversible control between sliding and pinning for diverse liquids under ultra-low voltageACS Nano20191355742575210.1021/acsnano.9b01180

[48] Li W, Lei Y P, Chen R, et alLight-caused droplet bouncing from a cavity trap-assisted superhydrophobic surfaceLangmuir20203637110681107810.1021/acs.langmuir.0c02062

[49] Habault D, Zhang H J, Zhao YLight-triggered self-healing and shape-memory polymersChem Soc Rev201342177244725610.1039/c3cs35489j

[50] Li Z, Zhang X Y, Wang S Q, et alPolydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalizationChem Sci2016774741474710.1039/C6SC00584E

[51] Puerto A, Méndez A, Arizmendi L, et alOptoelectronic manipulation, trapping, splitting, and merging of water droplets and aqueous biodroplets based on the bulk photovoltaic effectPhys Rev Appl202014202404610.1103/PhysRevApplied.14.024046

[52] Arizmendi LPhotonic applications of lithium niobate crystalsPhys Status Solidi (A)2004201225328310.1002/pssa.200303911

[53] Yan W S, Zhao C P, Luo W Y, et alOptically guided pyroelectric manipulation of water droplet on a superhydrophobic surfaceACS Appl Mater Interfaces20211319231812319010.1021/acsami.1c03407

[54] Thio S K, Bae S, Park S YPlasmonic nanoparticle-enhanced optoelectrowetting (OEW) for effective light-driven droplet manipulationSens Actuators B Chem202030812770410.1016/j.snb.2020.127704

[55] Ashkin A, Dziedzic J MRadiation pressure on a free liquid surfacePhys Rev Lett197330413914210.1103/PhysRevLett.30.139

[56] Han K Y, Wang Z B, Heng L P, et alPhotothermal slippery surfaces towards spatial droplet manipulationJ Mater Chem A2021931169741698110.1039/D1TA04243B

[57] Paula K T, Silva K L C, Mattos A V A, et alControlling surface wettability in methacrylic copolymer containing azobenzene by fs-laser microstructuringOpt Mater202111611108310.1016/j.optmat.2021.111083

[58] Milles S, Dahms J, Voisiat B, et alWetting properties of aluminium surface structures fabricated using direct laser interference patterning with picosecond and femtosecond pulsesJ Laser Micro/Nanoeng2021161747910.2961/jlmn.2021.01.3001

[59] Dou H Q, Liu H, Xu S Z, et alInfluence of laser Fluences and scan speeds on the morphologies and wetting properties of titanium alloyOptik202022416544310.1016/j.ijleo.2020.165443

[60] Yang Q, Cheng Y, Fang Z, et alThe preparation and applications of bio-inspired slippery surface by femtosecond laser micro-Nano manufacturingOpto-Electron Eng202249121032610.12086/oee.2022.210326

    杨青, 成扬, 方政, 等仿生超滑表面的飞秒激光微纳制造及应用光电工程202249121032610.12086/oee.2022.210326

[61] Chiou P Y, Chang Z H, Wu M CDroplet manipulation with light on optoelectrowetting deviceJ Microelectromech Syst200817113313810.1109/JMEMS.2007.904336

[62] Venancio-Marques A, Baigl DDigital optofluidics: LED-gated transport and fusion of microliter-sized organic droplets for chemical synthesisLangmuir201430154207421210.1021/la5001254

[63] Lv J A, Liu Y Y, Wei J, et alPhotocontrol of fluid slugs in liquid crystal polymer microactuatorsNature2016537761917918410.1038/nature19344

[64] Zhao Y Z, Su Y L, Hou X Y, et alDirectional sliding of water: biomimetic snake scale surfacesOpto-Electron Adv20214421000810.29026/oea.2021.210008

[65] Jiao Z Z, Han X C, Zhou H, et alLaser fabrication of light/voltage-responsive slippery liquid-infused porous substrate (SLIPS)Opto-Electron Eng202249221035610.12086/oee.2022.210356

    矫知真, 韩星尘, 周昊, 等光/电响应型超滑表面的激光加工制备光电工程202249221035610.12086/oee.2022.210356

[66] Tang X, Wang L QLoss-free photo-manipulation of droplets by pyroelectro-trapping on superhydrophobic surfacesACS Nano20181298994900410.1021/acsnano.8b02470

[67] Huang T, Zhang L, Lao J C, et alReliable and low temperature actuation of water and oil slugs in Janus photothermal slippery tubeACS Appl Mater Interfaces20221415179681797410.1021/acsami.2c01205

[68] Sun Q Q, Wang D H, Li Y N, et alSurface charge printing for programmed droplet transportNat Mater201918993694110.1038/s41563-019-0440-2

[69] Li J, Ha N S, Liu T L, et alIonic-surfactant-mediated electro-Dewetting for digital microfluidicsNature2019572777050751010.1038/s41586-019-1491-x

[70] Wang F, Liu M J, Liu C, et alLight control of droplets on photo-induced charged surfacesNatl Sci Rev2023101nwac16410.1093/NSR/NWAC164

[71] Ren H T, Jin H, Shu J, et alLight-controlled versatile manipulation of liquid metal droplets: a gateway to future liquid robotsMater Horiz20218113063307110.1039/d1mh00647a

[72] Paven M, Mayama H, Sekido T, et alLight-driven delivery and release of materials using liquid marblesAdv Funct Mater201626193199320610.1002/adfm.201600034

[73] Nagy P T, Neitzel G POptical levitation and transport of Microdroplets: proof of conceptPhys Fluids2008201010170310.1063/1.3005394

[74] Park S Y, Chiou P YLight-driven droplet manipulation technologies for lab-on-a-chip applicationsAdv OptoElectron2011201190917410.1155/2011/909174

[75] Hu S W, Xu B Y, Ye W K, et alVersatile microfluidic droplets array for bioanalysisACS Appl Mater Interfaces20157193594010.1021/am5075216

[76] Wang F, Liu M J, Liu C, et alLight-induced charged slippery surfacesSci Adv2022827eabp936910.1126/sciadv.abp9369

[77] Coughlin S RThrombin Signalling and protease-activated receptorsNature2000407680125826410.1038/35025229

[78] Hemker H C, Giesen P L, Ramjee M, et alThe thrombogram: monitoring thrombin generation in platelet-rich plasmaThromb Haemost200083458959110.1055/s-0037-1613868

[79] Thrivikraman G, Boda S K, Basu BUnraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: a tissue engineering perspectiveBiomaterials2018150608610.1016/j.biomaterials.2017.10.003

[80] McCaig C D, Song B, Rajnicek A MElectrical dimensions in cell scienceJ Cell Sci2009122234267427610.1242/jcs.023564

[81] Sun L Y, Bian F K, Wang Y, et alBioinspired programmable wettability arrays for droplets manipulationProc Natl Acad Sci202011794527453210.1073/pnas.1921281117

[82] Chen C, Huang Z C, Shi L A, et alRemote photothermal actuation of underwater bubble toward arbitrary direction on planar slippery Fe3O4-doped surfacesAdv Funct Mater20192940190476610.1002/adfm.201904766

[83] Dai L G, Lin D J, Wang X D, et alIntegrated assembly and flexible movement of microparts using multifunctional bubble microrobotsACS Appl Mater Interfaces20201251575875759710.1021/acsami.0c17518

[84] Hu M, Wang F, Chen L, et alNear-infrared-laser-navigated dancing bubble within water via a thermally conductive interfaceNat Commun2022131574910.1038/s41467-022-33424-4

[85] Čejková J, Banno T, Hanczyc M M, et alDroplets as liquid robotsArtif Life201723452854910.1162/ARTL_a_00243

[86] Baigl DPhoto-actuation of liquids for light-driven microfluidics: state of the art and perspectivesLab Chip201212193637365310.1039/c2lc40596b

[87] Bormashenko E, Pogreb R, Bormashenko Y, et alNew investigations on ferrofluidics: ferrofluidic marbles and magnetic-field-driven drops on superhydrophobic surfacesLangmuir20082421121191212210.1021/la802355y

[88] Dorvee J R, Sailor M J, Miskelly G M, et alDigital microfluidics and delivery of molecular payloads with magnetic porous silicon chaperonesDalton Trans2008672173010.1039/b714594b

[89] Goss C H, Kaneko Y, Khuu Y et alGallium disrupts bacterial iron metabolism and has therapeutic effects in mice and humans with lung infectionsSci Transl Med201810460eaat7520

[90] Fan X J, Dong X G, Karacakol A C, et alReconfigurable multifunctional ferrofluid droplet robotsProc Natl Acad Sci USA202011745279162792610.1073/pnas.2016388117

[91] Markvicka E J, Bartlett M D, Huang X N, et alAn autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronicsNat Mater201817761862410.1038/s41563-018-0084-7

[92] Park S Y, Kalim S, Callahan C, et alA light-induced dielectrophoretic droplet manipulation platformLab Chip20099223228323510.1039/b909158k

[93] Park S Y, Teitell M A, Chiou E P YSingle-sided continuous optoelectrowetting (SCOEW) for droplet manipulation with light patternsLab Chip201010131655166110.1039/c001324b

[94] Song H, Chen D L, Ismagilov R FReactions in droplets in microfluidic channelsAngew Chem Int Ed200645447336735610.1002/anie.200601554

[95] Wu Y C, Feng J G, Gao H F, et alSuperwettability-based interfacial chemical reactionsAdv Mater2019318180071810.1002/adma.201800718

[96] Yang Z J, Wei J J, Sobolev Y I, et alSystems of Mechanized and Reactive Droplets Powered by Multi-responsive SurfactantsNature2018553768831331810.1038/nature25137

[97] Wang Y, Jin R N, Shen B Q, et alHigh-throughput functional screening for next-generation cancer immunotherapy using droplet-based microfluidicsSci Adv2021724eabe383910.1126/sciadv.abe3839

[98] Mongera A, Rowghanian P, Gustafson H J, et alA fluid-to-solid jamming transition underlies vertebrate body axis elongationNature2018561772340140510.1038/s41586-018-0479-2

[99] Bawazer L A, McNally C S, Empson C J, et alCombinatorial microfluidic droplet engineering for biomimetic material synthesisSci Adv2016210e160056710.1126/sciadv.1600567

[100] Sarkar M S K A, Donne S W, Evans G MHydrogen bubble flotation of silicaAdv Powder Technol201021441241810.1016/j.apt.2010.04.005

[101] Warnier M J F, De Croon M H J M, Rebrov E V, et alPressure drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbersMicrofluid Nanofluid201081334510.1007/s10404-009-0448-z

张琛, 文通, 刘泽志, 高文萍, 王新孔, 李紫钰, 匡翠方, 王凯歌, 白晋涛. 光响应液滴操控功能表面研究及应用进展[J]. 光电工程, 2023, 50(3): 220326. Chen Zhang, Tong Wen, Zezhi Liu, Wenping Gao, Xinkong Wang, Ziyu Li, Cuifang Kuang, Kaige Wang, Jintao Bai. Research and application advances of photo-responsive droplet manipulation functional surface[J]. Opto-Electronic Engineering, 2023, 50(3): 220326.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!